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Deep Learning Frameworks

» Big demand from organizations to apply deep learning to big data
» Deep learning frameworks:

Torch [2002 Collobert et al.] [ C, Lua]

Caffe [2014 Berkeley BAIR] [C++]

TensorFlow [2015 Google Brain] [C++, Python, CUDA]
Apache MXNet [2015 Apache Software Foundation] [C++]
Chainer [2015 Preferred Networks] [ Python]

Keras [2016 Francois Chollet] [Python]

PyTorch [2016 Facebook] [Python, C++, CUDA]

» Apache Spark is an open-source distributed general-purpose
cluster-computing framework.

VYyVVYYVYYVYY

» Provides interface for programming clusters with data parallelism
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BigDL

v

A library on top of Apache Spark

v

Provides integrated data-analytics within a unifed data analysis
pipeline

Allows users to write their own deep learning applications
Running directly on big data clusters

Supports similar API to Torch and Keras

Supports both large scale distributed training and inference

vV Vv vy Vvyy

Able to run across hundreds or thousands servers efficiently by uses
underlying Spark framework
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BigDL

» Developed as an open source project
» Used by

Mastercard

WorldBank

Cray

Talroo

UCSF

JD

UnionPay

GigaSpaces

» Wide range of applications: transfer learning based image
classification, object detection, feature extraction,
sequence-to-sequence prediction, neural collaborative filtering for
reccomendation etc.
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Motivation
» Normally in research established datasets and benchmarks
What if we had dynamic data?

» We need to care about compatibility and efficieny in another level

» End-to-end integrated data analytics and deep learning
frameworks
Real world data is dynamic, messy and implicitly labeled

Requires more complex data processing
Morevoer, it is not single shot i.e. ETL (extract, transform, load)

vV VvYyy

It is iterative and recurrent (back-and-forth development and
debugging)
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Prior Approach Drawbacks

» It is highly inefficient to run on big data and deep learning systems
separately

» Connector approach:
> TFX
> CaffeOnSpark
» TensorFlowOnSpark
» SageMaker
> provides proper interface to connect data processing and deep
learning frameworks
> Results in very large overheads in practice
> inter-process communication
> data serialization
» impedance matching (crossing boundaries between
heterogenous components)
> persistency etc.
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Prior Approach

» If a Spark worker fails, Spark system relaunch the worker
» Highly incompatible with TensorFlow execution model
» Causing the entire workflow to be blocked indefinetly
» BigDL
» Directly implements the distributed deep learning in the big data
» End-to-end single framework
> Eliminates the impedance mismatch
> Efficient
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Figure: The “model forward-backward” spark job computing the local gradients for
each model replica in parallel.




Parameter Synchronization in BigDL

local gradient local gradient local gradient
ODE 0D DB D OE D
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Task 1 Task 2 Task n
“Parameter synchronization” job

Figure: Parameter synchronization in BigDL. Each local gradient is evenly divided
in N partitions; then each task n in the “parameter synchronization” job aggregates
these local gradients and updates the weights for the n partition.
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Evaluation

» In their experimental setup authors use
» Neural Collaborative Filtering (NCF)

» NCF on MovieLens 20Million dataset
» 20 million ratings

» 465000 tags

» 27000 movies

» 138000 users

» Convolutional Neural Networks (CNNs)
> Inception-v1 on ImageNet
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Experiments for NCF

Speed Comparison
Reference PyTorch NCF vs. BigDL NCF

1.6x
| .

Reference-PyTroch-NCF BigDL-NCF

~

Relative Performance
0000 mpee
ocRhmomrno®

» NCF using BigDL trained on dual-socket Intel Skylake [29.8 min]
»> 56 cores and 384 GB memory

» NCF using PyTorch [Reported by MLPerf]
> Single Nvidia P100 GPU
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Experiments on ImageNet
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Figure: Left: Overhead of parameter synchronization measured as a fraction of the
average model computation time. Right: Throughput of ImageNet Inception-v1
training in BigDL.
» ImageNet Inception-v1 using BigDL
» Each node dual-socket Intel Broadwell 2.1GHz
» Syncronization overhead is small (less than 7%)

» Scales linearly up to 96 nodes.
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Experiments on ImageNet Task Scheduling

12%
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Tasks

Figure: Overheads of task scheduling and dispatch for ImageNet Inception-v1 in
BigDL.

» Needs to schedule very large number of tasks across cluster

» Low for 100-200 tasks per iteration

» Grows to over 10% close to 500 tasks per iteration

» Using group scheduling introduced by Drizzle (low latency
execution engine) can reduce this overhead
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Experiments on Feature Extraction
Image feature extraction pipeline

throughput (image/sec)
2500

2000
1500
1000
500
6 1

K40 (20 Cards) Xeon (BigDL running
on 1200 logic cores)

Figure: Throughput of GPU clusters and Xeon clusters for the image features
extraction pipeline benchmarked by JD.

» GPU cluster consists of 20 NVIDIA Tesla K40 cards
» Xeon Cluster consists of 1200 logical cores running 50 logical cores
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Critique

> Some metric to actually quantify the discussions in the experiment
section

» Server utilization?
» Cost for equipment?
» Network traffic?

»> Power dissipation?

» As it stands hard to interpret the actual contribution

» Explicit explanation needs to be added on speed comparison with
proper metrics
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PyTorch Distributed: Experiences on Accelerating Data Parallel Training

Shen Li et al

VLDB Endowment 2020
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Contributions

e Describes the design and implementation of a widely adopted industrial
state-of-the-art distributed training solution

e Highlights real-world caveats

e Share performance tuning experiences collected from serving internal teams
and open-source community users and summarized several directions for

future improvements.



Design Principles

o API

o Non-intrusive
o Allow the implementation to intercept
signals and trigger appropriate

algorithms promptly

oA W N

import
import
import
import

torch

torch.nn as nn
torch.nn.parallel as par
torch.optim as optim

# initialize torch.distributed properly
# with init_process_group

# setup model and optimizer

net =
net
opt =

# run
inp =
exp =
out

# run

nn.Linear (10, 10)
par .DistributedDataParallel(net)
optim.SGD (net.parameters (), 1lr=0.01)

forward pass
torch.randn (20, 10)
torch.randn (20, 10)
net (inp)

backward pass

nn.MSELoss () (out, exp).backward()

# update parameters
opt.step ()



Design Principles

e Gradient Reduction

o Allreduce

m Performs poorly on small tensors

m  No opportunity to overlap computation with communication (since everyone must join)
o Gradient bucketing

m  Still Allreduce

m Concat small tensors into bigger chunks

m Do not reduce all parameters in single shot

m [riggered by autograd hook



Design Principles

e Communication Collectives

o MPI

o NCCL

o Gloo

o Use ProcessGroups to manage parallelisms (communication, CUDA, etc)



Evaluation platform

e 4 GPU servers
e Mellanox MT27700 ConnectX-4 100GB/s NIC
e 38 NVIDIA Tesla V100 GPUs per node



Latency improvement

e Overlapping approach on ResNet

and BERT on 32 GPUs
o NCCL attains 38.0% and 35.2%
speedup
o GLOO attains 26.8% and 21.5%
speedup
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Figure 6: Per Iteration Latency Breakdown



Scalability (Weak Scaling!)
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Figure 9: Scalability
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Scalability (“Async” update”)
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Figure 10: Skip Gradient Synchronization



Conclusion

e Communication backends
e Bucket size (transfer size)
e Resource allocation (out-of-core training)



Discussion

e \What are the limitation of hook based communication trigger?

e Can this scheme impact progress? (e.g. stall for bucket 0)



Beyond Data and Model parallelism For Deep Neural Networks

Zhihao Jia, Matei Zaharia, Alex Aiken

MLSys’19

Presented by: Steven W. D. Chien for FID3024 VT20



Background and Research Question
Hybrid Parallelism

Solution

Optimization

Related work and Conclusion



Background

e Data parallelism

e Model parallelism



Data parallelism

e Batches as finest granularity
e Synchronize every certain intervals

e Care required in synchronization and parameter tuning



Model parallelism

e Operations in model as lowest granularity
e All operations execute ayshcnrounsly, subject to dependency

e Difficult placement

o Computation power
o  Communication cost

o Degree of overlapping



What if....

The operations themselves can be parallelized?



FlexFlow: SOAP

e Sample
e Operator
e Attribute

e Parameter



FlexFlow: SOAP

e Sample
o E.g. sample based data parallelism
e Operator
o E.g.Conv/gemm
e Attribute
o E.g. Length / Width
e Parameter

o E.g. Channels



FlexFlow: SOAP

Table 2. Parallelizable dimensions for different operators. The
sample and channel dimension index different samples and neu-
rons, respectively. For images, the length and the combination of
height and width dimensions specify a position in an image.

Parallelizable Dimensions

2D convolution

Operator (S)ample (A)ttribute (P)arameter
1D pooling sample length, channel
1D convolution sample length channel

sample height, width channel

Matrix multiplication | sample channel

2 E 2 5 2 A

c Cl (= I = mane = O '

2 2 2 i = =

: G G &° &
' \/Q/ \/Q/ ! \/Q/

Sample Sample Sample Sample
Data Parallelism Model Parallelism  Hybrid Parallelism  Hybrid Parallelism
(s) (P) (s, P) (S,A,P)

Figure 2. Example parallelization configurations for 1D convolu-
tion. Dashed lines show partitioning the tensor.

Jia, Z., Zaharia, M. and Aiken, A., 2018. Beyond data and model parallelism for deep neural networks. arXiv preprint arXiv:1807.05358.



How to compute a matrix multiplication?

U (output) V (input) W (input)
Channelgt (P) Channel;, (P) Channelyt (P)

X

Sample (S)
|
Sample (S)

Channeli, (P)

Degree(Sample) = 2, Degree(Channelyy) =2

Configuration pe ices = (GPU1, GPU2, GPU3, GPU4}

(9]
T
c
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X
®
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]
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@
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]

Figure 3. An example parallelization configuration for a matrix
multiplication operator.

Jia, Z., Zaharia, M. and Aiken, A., 2018. Beyond data and model parallelism for deep neural networks. arXiv preprint arXiv:1807.05358.



How to compute a matrix multiplication?

Process
PO P1 P2
P3 P4 P5
P6 P7 P8

Matrix tiles
AO0O AO1 AO02
BOO BO1 B0O2
Al10 All Al2
B10 B1l B12
A20 A21 A22
B20 B21 B22




How to compute a matrix multiplication?

Buffer A Buffer B Buffer C
A00 A01 A02 BOO BO1 B0O2 288 ggcl) ggg
a0 | Al | Atz || Bl | Bu | Biz || AL | AU | AL
A20 A21 A22 B20 B21 B22 ggé égi ggg

C00 = A0O x BOO + AO1 x B10 + A02 x B20 #iterations = V#tiles = V9 = 3
C10 = A10 x BOO + A1l x B10 + A 12 x B20

€20 =A20 x BOO + A21 x BIO + A22XB20 o2 = AQ0 x BO2 + ADL X B12 + AO2 X B22

C12=A10xB02 + A11 x B12 + A12 x B22

C01 =A00xB0O1 +A01 xB11 + A0O2 x B21 C22 = A20 x B02 + A21 x B12 + A22 x B22

Cl11 =A10x BO1 + A11 x B11 + A12 x B21
C21 =A20 xBO1 + A21 x B11 + A22 x B21



How to compute a matrix multiplication?

Buffer A Buffer B Buffer C
A00 A0O A»OO BOO BO1 B02 '288 28(1) ggg
All All All B10 B11l B12 éié g\ﬁ éi;
- >
AZE A22 A22 B20 B21 B22 g‘gg ggi ggg

CO00 = AOO x BOO + A01 x B10 + A02 x B20
C10=A10xB00 + A11 x B10 + A12 x B20

C12 =A10x B02 + A11 x B12 + A12 x B22
C01 = A0O x BO1 + A01 x B11 + A02 x B21 C22 =A20x B02 + A21 x B12 + A22 x B22
C11 =A10x BO1 + A11 x B11 + A12 x B21
C21 =A20xB01 + A21 x B11 + A22 x B21



How to compute a matrix multiplication?

Buffer A Buffer B Buffer C

A0l A0l A01

AO1 | AO1 | A01 B10 B11 B12 B10 B11 B12

- >

Al2 Al2 Al2

Al2 Al2 Al2 B20 B21 B22

A20 A20 A20
A20 A20 A>20 BOO BO1 BO2 B0OO BO1 B02

CO00 = AOO x BOO + AO1 x B10 + A02 x B20
C10=A10x B0OO + A11 x B10 + A12 x B20

€20=A20xBOO +A21 x B10 + A22XB20  c02 = A00 x BO2 + AL X B12 + AD2 X B22

C12 =A10xB02 + A11 x B12 + A12 x B22
C01 = A00 x BO1 + A0O1 x B11 + A02 x B21 C22 = A20 x BO2 + A21 x B12 + A22 x B22

C11 =A10x B0O1 + A11 x B11 + A12 x B21
C21 = A20 x BO1 + A21 x B11 + A22 x B21



How to compute a matrix multiplication?

Buffer A Buffer B Buffer C
oz | oo O % ||
0 | o | o || e | o | s || 3| A7 | 68
oy || @ |eo e e || GO

C00 = AOO x BOO + AO1 x B10 + A02 x B20
C10=A10x B00 + A11 x B10 + A12 x B20

C12 = Al10x B0O2 + A11 x B12 + A12 x B22

C01=A00xB01 +A01xB11 +A02xB21 C22 = A20 x B02 + A21 x B12 + A22 x B22

C11 = A10x B0O1 + A11 x B11 + A12 x B21
C21 =A20xB01 + A21 x B11 + A22 x B21



Wait... But this is not as simple as ScalLAPACK?!



Challenges

e What we know
o Configurations of tensors (S, A, P)

e \What we do not know
o How to optimally split an operation (O) subject to constraints
o Resources
o Communication

o Overlapping



Parallelization Strategy

e Partitions an operator Oj into|c;| independent tasks Zi:1y - - -5 ti:|g|
e Configuration also includes the device assignment for each task
o tik(1 <k <|cil)

e Infer the necessary input tensors for each task using the output Tensors



Parallelization Strategy

e Define S that describes one possible parallelization for each operation

e Configurations of each operator can be randomly chosen



Choosing strategy: Execution simulator

e Assumptions

o Input independent and predictable execution time with low variance
o  Communication bandwidth can be fully utilized
o  FIFO scheduling policy

o Negligible runtime overhead



Construct a task graph

Two kinds of tasks: Normal (compute, communicate, Edge (dependency)

Place all tasks of an operation in the graph

1.

2

3. Connect the input and output tensors (device placement)

4. If two connected tasks are on the same device, add an edge
5

Else, add a communication task



Simulate

Table 3. Properties for each task in the task graph.

Property [ Description
e . Properties set in graph construction
e Fill in a number of prope rties exeTime The elapsed time to execute the task.
. device The assigned device of the task.
o Device Z() {tin|(Ein: t) € TE}
o exeTime oW {toutl(t, tour) € Te}
5 Properties set in simulation
U readyTime | The time when the task is ready to run.
e Run a variant of DIJ kstra’s a|gOrithm startTime | The time when the task starts to run.
endTime The time when the task is completed.
() Dequeue in Order Of ready t|me preTask The previous task performed on device.
nextTask The next task performed on device.
Internal properties used by the full simulation algorithm
s Current state of the task, which is one of
NOTREADY, READY, and COMPLETE.




Optimize task graph

e Introduces “Delta simulation algorithm”
o Change configuration of one operator at a time
o  Only resimulate the affected operations

e Search

o Use existing strategy (only data parallel, expert tuned) as initial condition
o Replace one operator configuration at a time (randomly) by a random config

o Use expected execution as cost function for minimization



Embedding: Recurrent.  Linear GPU1 Xfer GPU2 Xfer GPU3  GPU1 Xfer GPU2 Xfer GPU3  GPU1 Xfer (GPU2 Xfer GPU3
Layer Layer Layer L I exe:2 exe:1 exe:1 exe:1 exe:3 exe:2 exe:1 exe:2 exe:2 exe:3

(09—

Config c1, c2:
# batch = 2

Config ¢3, c4:| Config c5, c6:
# batch = 2 # batch = 1

#channel =1 | #channel=1 | # channel = 1
k= GPUI | Ly=GPU2 | ty=GPUS B0
(a) An example parallelization strategy. (b) The corresponding (c) The task graph after the (d) The task graph after the
task graph. full simulation algorithm. delta simulation algorithm.

Figure 4. Simulating an example parallelization strategy. The tasks’ exeTime and device are shown on the top of each column. In

Figure 4c¢ and 4d, the word “r”” and “s” indicate the readyTime and startTime of each task, respectively, and the dashed edges
indicate the next Task.



Implementation

e FlexFlow (Not the one in HPCA'17 ?)
e CcuDNN

e CuBLAS

e Legion (Task based runtime, SC’12)



Evaluation: Applications

Table 4. Details of the DNNs and datasets used in evaluation.

DNN | Description || Dataset | Reported Acc. | Our Acc.
Convolutional Neural Networks (CNNs)

AlexNet A 12-layer CNN Synthetic data - -

Inception-v3 | A 102-layer CNN with Inception modules (Szegedy et al., 2014) || ImageNet 78.0%* 78.0%*

ResNet-101 | A 101-layer residual CNN with shortcut connections ImageNet 76.4%* 76.5%*

Recurrent Neural Networks (RNNSs)

RNNTC 4 recurrent layers followed by a softmax layer Movie Reviews (Movies) 79.8% 80.3%

RNNLM 2 recurrent layers followed by a softmax layer Penn Treebank (Marcus et al.) 78.4° 76.1°

NMT 4 recurrent layers followed by an attention and a softmax layer WMT English-German (WMT) | 19.67¢ 19.85°¢

a

top-1 accuracy for single crop on the validation dataset (higher is better).
b

word-level test perplexities on the Peen Treebank dataset (lower is better).
“ BLEU scores (Papineni et al., 2002) on the test dataset (higher is better).




Evaluation: Platforms
100 Gb/§_,~

| k8o | | k8o |

| k80 | | k8o |

K80 | | k8o

k8o | | k8o

(a) The P100 Cluster (4 nodes). (b) The K80 Cluster (16 nodes).

Figure 5. Architectures of the GPU clusters used in the experi-
ments. An arrow line indicates a NVLink connection. A solid line
is a PCI-e connection. Dashed lines are Infiniband connections

across different nodes.



Evaluation: Configuration search

e Data parallelism as initial condition

e 30 minutes search budget



-3 Data Parallelism (P100)

@@ FlexFlow (P100)

A—A Expert-designed Strategy (P100)

-0 Data Parallelism (K80)
A~A Expert-designed Strategy (K80)
OO FlexFlow (K80)

AlexNet (batch size = 256)

Bnception_v3 (batch size = 64)
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Figure 6. Per-iteration training performance on six DNNs. Num-
bers in parenthesis are the number of compute nodes used in the
experiments. The dash lines show the ideal training throughput.



Three figure of merits
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Figure 7. Parallelization performance for NMT on 64 K80 GPUs
(16 nodes). FlexFlow reduces per-iteration execution time by 1.7-
2.4 x and data transfers by 2-5.5 x compared to other approaches.
FlexFlow achieves similar overall task computation time as expert-
designed strategy, which 1s 20% fewer than data parallelism.



End-to-end training performance

=
o

TensorFlow
- FlexFlow

[o9]
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Figure 8. Training curves of Inception-v3 in different systems. The
model is trained on 16 P100 GPUs (4 nodes).



Speedup of configuration search time using Delta

Table 5. The end-to-end search time with different simulation algorithms (seconds).
Num. AlexNet ResNet Inception RNNTC RNNLM NMT
GPUs | Full Delta Speedup | Full Delta Speedup | Full Delta Speedup | Full Delta Speedup | Full  Delta Speedup | Full Delta Speedup
41011 0.04 2.9x 14 04 3.2x% 14 4.1 3.4x 16 7.5 2.2% 21 9.2 2.3x 40 16 2.5x%
8| 040 0.13 3.0x 45 14 3.2x 66 17 3.9x 91 39 2.3x% 76 31 2.5x% 178 65 2.7x
16 | 1.4 048 2.9x 22 7.3 3.1x 388 77 5.0x 404 170 2.4x 327 121 2.7x 998 328 3.0x
32 |53 1.8 3.0x 107 33 3.2x% 1746 298 5.9x 1358 516 2.6x 1102 342 3.2x 2698 701 3.8x
64 | 18 59 3.0x 515 158 3.3x% 8817 1278 6.9 < 4404 1489 3.0x 3406 969 3.6% 8982 2190 4.1x




Simulation Accuracy
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Figure 10. Comparison between the simulated and actual execution
time for different DNNs and device topologies.



Figure 12. The best discovered strategy for parallelizing Inception-v3 on 4 P100 GPUs. For each operator, the vertical and horizontal
dimensions indicate parallelism in the sample and parameter dimension, respectively. Each GPU is denoted by a color.
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Figure 13. The best discovered strategy for parallelizing NMT on
4 P100 GPUs. For each operator, the vertical and horizontal dimen-
sions indicate parallelism in the sample and parameter dimension,
respectively. Each grey box denotes a layer, whose operators share
the same network parameters. Each GPU is denoted by a color.



Conclusion

e FlexFlow that uses SOAP: A lower granularity of parallelization
e Transforming into a “task” runtime problem

e Uses traditional optimization techniques



Discussion

e \What are the alternatives to task based runtime in this context?
e Can this scheme be modeled as a traditional parallel application?

e Is the full bandwidth utilization assumption over optimistic?
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Data Parallelism (DP) Model Parallelism (MP)

e Compute/communication efficiency e Favourable memory efficiency
e Poor memory efficiency e Poor compute/communication efficiency
Redundant memory allocation ] [ Expensive communication

Both keep all the model states over entire training process



Zero Redundancy Optimizer (ZeRO)

Goal: Achieve the best of both worlds

[ Make full aggregate memory capacity of a cluster available while remaining efficient 1

Contribution:

Reduce per-device memory footprint linearly with the increased degree of parallelism while
keeping communication close to that of default DP

1. Improved training speed for large models
2. Independence of model size



An Example

1.5B parameter GPT-2 trained with ADAM

e \Weights/parameters: 3GB with fp16 (2%)
e Gradients: 3GB with fp16 (2%)
e Optimizer state: fp32 copy of parameters, momentum, variance -> 18GB (4¥+4¥+4Y)

Residual memory:

e Activations: for a GPT like model 72 * hidden_dim * batch * seq_length * transformer_layers (60 GB)
o Checkpointing: trading-off memory for computation

e Temporary buffers: Gradient fusion for improved device throughput (6GB)

e Memory fragmentation: long-lived vs. short-lived memory
o Reduces practically available amount of memory
o OOM with over 30% memory still available



Optimizing Model State Memory (ZeRO-DP)

Assumption: For large models, the majority of the memory is occupied by model states which includes
optimizer states (momentum, variances), gradients and parameters.

K=12 .
Memory — | ~%  Memory Reduction
gpu, gpu; gPUy_1 Consumed | _¢,
Baseline (2+2+K)*¥ | 1208
P, 2W+ 2%+ | 31468 4X
- 2w+ EH0Y igeas 8X
5 @2E= 1 Linear with Nd
0S+g+p ‘

Parameters Gradients Optimizer States



Optimizing Rrsidual State Memory (Zero-R)

That is: Activation, temporary buffers and unusable fragmented memory.

1. Activation partitioning and CPU offloading
2. Constant size temporary buffer size
3. Proactive management of memory with respect to tensor lifetime.



Do we still need MP, and when?

ZeRO-DP is at least as effective in reducing memory as MP, or even more effective when MP cannot
divide model evenly. + scales better.

1. MP can be extended with ZeRO-R
2. Smaller models, MP might have better convergence due to large batch size in Zero-DP.



Relation to Other Optimizations

Pipeline Parallelism:
Often incurs functionality, performance and convergence

Activation Memory Optimization:
Compression, checkpointing or live analysis (complementary)

CPU Offloading:
Can be avoided due to memory reduction

Memory efficient optimizers:
Impact convergence (orthogonal, ZeRO does not change the optimizer)

Training Optimizers:
ZeRO makes more sophisticated optimizers possible



https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



Zero-DP
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GPUQO initially has parameters of MO -> broadcast
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1,2,3 delete parameters and 1 continues broadcasting parameters of M1
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Forward Pass complete -> Loss
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The Backward Pass starts on M3
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M3 on all devices
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The activations for M; are recomputed from the saved partial activations



M, Los M, Loss
IIIIIIIIIIIIIIII‘ -... llllllllllllllllt.

> — ey (]

GPU, j
M Lo

...=-.-..--.-l#2l_l]lll. ....-.. ...-...-ﬁ_.\‘=ss
Dz SIS0 ta
I I e

GPU, GPU,

GPUy ,; , pass their M; gradients to GPU,
GPU, performs gradient accumulation and holds final M; for all Data



To Start M2, GPU2 broadcasts parameters
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GPU, passes M,’s parameters to GPUj ; ; so they can run the
backwards pass and compute gradients for M,



Update Parameters For Local Partition
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Now every GPU has its respective gradients (accumulated from all datasets)
We can compute the updated parameters



Optimizer Runs in Parallel
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The fp16 weights become the model parameters for the next iteration

Training iteration complete!



Analysis

Memory consumption

Model state memory
Activation memory

Fragmented memory

Optimizations

Partition optimizer
states, gradient, and
parameters

Partition activations;
Offload to CPU

Proactively manage

memory w.rt. tensor
lifetime

Parameters Gradients Optimizer States
BPu, 8Py, BPUy

Baseline

Baseline 1x 1x
| Pos 4x 1x
|

Pos+g 8x 1x

}Pos+g+p Nd (DP degree) @

All-gather over parameters is spread over entire forward
pass, but needs to happen again for backward pass as
parameters are discarded.



Results

ZeRO vs. Megatron-LM (MP) and PyTorch Distributed Data Parallel (Baseline without MP)

400 V100 GPUs
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Figure 4: Max model throughput with ZeRO-DP.

No MP, up to 13B parameters on
128 GPUs
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Figure 5: SOTA Turing-NLG enabled
by ZeRO.



Super-Linear Scalability - 60B parameters
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Trillion PArameters Possible?

Theoretically yes, when combined with MP and with 1024 GPUs

- 16-way model parallelism (intra DGX-2 node)
- ©64-way data parallelism

Turing-NLP: 17B

GPT-3: 175B

https://www.microsoft.com/en-us/research/blog/turing-nig-a-17-billion-parameter-language-model-by-microsoft/
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