
KTH ROYAL INSTITUTE
OF TECHNOLOGY

BigDL: A Distributed Deep Learning Framework for Big Data

ACM Symposium on Cloud Computing 2019 [Acceptance Rate: 24%]
Jason Jinquan Dai, Yiheng Wang, Xin Qiu, Ding Ding, Yao Zhang, Yanzhang
Wang, Xianyan Jia, Cherry Li Zhang, Yan Wan, Zhichao Li, Jiao Wang, Sheng-
sheng Huang, Zhongyuan Wu, Yang Wang, Yuhao Yang, Bowen She, Dongjie Shi,
Qi Lu, Kai Huang, Guoqiong Song. [Intel Corporation]

Presenter: Ezgi Korkmaz

Outline

I Deep learning frameworks

I BigDL applications

I Motivation for end-to-end framework

I Drawbacks of prior approaches

I BigDL framework

I Experimental Setup and Results of BigDL framework

I Critique of the paper

2/16

Deep Learning Frameworks

I Big demand from organizations to apply deep learning to big data

I Deep learning frameworks:

I Torch [2002 Collobert et al.] [C, Lua]
I Caffe [2014 Berkeley BAIR] [C++]
I TensorFlow [2015 Google Brain] [C++, Python, CUDA]
I Apache MXNet [2015 Apache Software Foundation] [C++]
I Chainer [2015 Preferred Networks] [Python]
I Keras [2016 Francois Chollet] [Python]
I PyTorch [2016 Facebook] [Python, C++, CUDA]

I Apache Spark is an open-source distributed general-purpose
cluster-computing framework.

I Provides interface for programming clusters with data parallelism

3/16

BigDL

I A library on top of Apache Spark

I Provides integrated data-analytics within a unifed data analysis
pipeline

I Allows users to write their own deep learning applications

I Running directly on big data clusters

I Supports similar API to Torch and Keras

I Supports both large scale distributed training and inference

I Able to run across hundreds or thousands servers efficiently by uses
underlying Spark framework

4/16

BigDL

I Developed as an open source project

I Used by

I Mastercard
I WorldBank
I Cray
I Talroo
I UCSF
I JD
I UnionPay
I GigaSpaces

I Wide range of applications: transfer learning based image
classification, object detection, feature extraction,
sequence-to-sequence prediction, neural collaborative filtering for
reccomendation etc.

5/16

Motivation

I Normally in research established datasets and benchmarks

What if we had dynamic data?

I We need to care about compatibility and efficieny in another level

I End-to-end integrated data analytics and deep learning
frameworks

I Real world data is dynamic, messy and implicitly labeled

I Requires more complex data processing

I Morevoer, it is not single shot i.e. ETL (extract, transform, load)

I It is iterative and recurrent (back-and-forth development and
debugging)

6/16

Prior Approach Drawbacks

I It is highly inefficient to run on big data and deep learning systems
separately

I Connector approach:
I TFX
I CaffeOnSpark
I TensorFlowOnSpark
I SageMaker

I provides proper interface to connect data processing and deep
learning frameworks

I Results in very large overheads in practice
I inter-process communication
I data serialization
I impedance matching (crossing boundaries between

heterogenous components)
I persistency etc.

7/16

Prior Approach

I If a Spark worker fails, Spark system relaunch the worker

I Highly incompatible with TensorFlow execution model

I Causing the entire workflow to be blocked indefinetly

I BigDL

I Directly implements the distributed deep learning in the big data

I End-to-end single framework

I Eliminates the impedance mismatch

I Efficient

8/16

Data-parallel training in BigDL

Figure: The “model forward-backward” spark job computing the local gradients for
each model replica in parallel.

9/16

Parameter Synchronization in BigDL

Figure: Parameter synchronization in BigDL. Each local gradient is evenly divided
in N partitions; then each task n in the “parameter synchronization” job aggregates
these local gradients and updates the weights for the nth partition.

10/16

Evaluation

I In their experimental setup authors use

I Neural Collaborative Filtering (NCF)

I NCF on MovieLens 20Million dataset
I 20 million ratings
I 465000 tags
I 27000 movies
I 138000 users

I Convolutional Neural Networks (CNNs)

I Inception-v1 on ImageNet

11/16

Experiments for NCF

I NCF using BigDL trained on dual-socket Intel Skylake [29.8 min]

I 56 cores and 384 GB memory

I NCF using PyTorch [Reported by MLPerf]

I Single Nvidia P100 GPU

12/16

Experiments on ImageNet

Figure: Left: Overhead of parameter synchronization measured as a fraction of the
average model computation time. Right: Throughput of ImageNet Inception-v1
training in BigDL.

I ImageNet Inception-v1 using BigDL

I Each node dual-socket Intel Broadwell 2.1GHz

I Syncronization overhead is small (less than 7%)

I Scales linearly up to 96 nodes.

13/16

Experiments on ImageNet Task Scheduling

Figure: Overheads of task scheduling and dispatch for ImageNet Inception-v1 in
BigDL.

I Needs to schedule very large number of tasks across cluster

I Low for 100-200 tasks per iteration
I Grows to over 10% close to 500 tasks per iteration
I Using group scheduling introduced by Drizzle (low latency

execution engine) can reduce this overhead

14/16

Experiments on Feature Extraction

Figure: Throughput of GPU clusters and Xeon clusters for the image features
extraction pipeline benchmarked by JD.

I GPU cluster consists of 20 NVIDIA Tesla K40 cards

I Xeon Cluster consists of 1200 logical cores running 50 logical cores

15/16

Critique

I Some metric to actually quantify the discussions in the experiment
section

I Server utilization?

I Cost for equipment?

I Network traffic?

I Power dissipation?

I As it stands hard to interpret the actual contribution

I Explicit explanation needs to be added on speed comparison with
proper metrics

16/16

PyTorch Distributed: Experiences on Accelerating Data Parallel Training
Shen Li et al

VLDB Endowment 2020

Presented by: Steven W. D. Chien for FID3024 VT20

Contributions

● Describes the design and implementation of a widely adopted industrial

state-of-the-art distributed training solution

● Highlights real-world caveats

● Share performance tuning experiences collected from serving internal teams

and open-source community users and summarized several directions for

future improvements.

Design Principles

● API
○ Non-intrusive

○ Allow the implementation to intercept

signals and trigger appropriate

algorithms promptly

Design Principles

● Gradient Reduction
○ Allreduce

■ Performs poorly on small tensors

■ No opportunity to overlap computation with communication (since everyone must join)

○ Gradient bucketing

■ Still Allreduce

■ Concat small tensors into bigger chunks

■ Do not reduce all parameters in single shot

■ Triggered by autograd hook

Design Principles

● Communication Collectives
○ MPI
○ NCCL
○ Gloo
○ Use ProcessGroups to manage parallelisms (communication, CUDA, etc)

Evaluation platform

● 4 GPU servers

● Mellanox MT27700 ConnectX-4 100GB/s NIC

● 8 NVIDIA Tesla V100 GPUs per node

Latency improvement

● Overlapping approach on ResNet
and BERT on 32 GPUs

○ NCCL attains 38.0% and 35.2%
speedup

○ GLOO attains 26.8% and 21.5%
speedup

Scalability (Weak Scaling!)

Scalability (“Async” update”)

Conclusion

● Communication backends
● Bucket size (transfer size)
● Resource allocation (out-of-core training)

Discussion

● What are the limitation of hook based communication trigger?

● Can this scheme impact progress? (e.g. stall for bucket 0)

Beyond Data and Model parallelism For Deep Neural Networks
Zhihao Jia, Matei Zaharia, Alex Aiken

MLSys’19

Presented by: Steven W. D. Chien for FID3024 VT20

● Background and Research Question

● Hybrid Parallelism

● Solution

● Optimization

● Related work and Conclusion

Background

● Data parallelism

● Model parallelism

Data parallelism

● Batches as finest granularity

● Synchronize every certain intervals

● Care required in synchronization and parameter tuning

Model parallelism

● Operations in model as lowest granularity

● All operations execute ayshcnrounsly, subject to dependency

● Difficult placement

○ Computation power

○ Communication cost

○ Degree of overlapping

What if….

The operations themselves can be parallelized?

FlexFlow: SOAP

● Sample

● Operator

● Attribute

● Parameter

FlexFlow: SOAP

● Sample
○ E.g. sample based data parallelism

● Operator
○ E.g. Conv / gemm

● Attribute
○ E.g. Length / Width

● Parameter
○ E.g. Channels

FlexFlow: SOAP

Jia, Z., Zaharia, M. and Aiken, A., 2018. Beyond data and model parallelism for deep neural networks. arXiv preprint arXiv:1807.05358.

How to compute a matrix multiplication?

Jia, Z., Zaharia, M. and Aiken, A., 2018. Beyond data and model parallelism for deep neural networks. arXiv preprint arXiv:1807.05358.

How to compute a matrix multiplication?

How to compute a matrix multiplication?

How to compute a matrix multiplication?

How to compute a matrix multiplication?

How to compute a matrix multiplication?

Wait… But this is not as simple as ScaLAPACK?! 😱

Challenges

● What we know
○ Configurations of tensors (S, A, P)

● What we do not know
○ How to optimally split an operation (O) subject to constraints

○ Resources

○ Communication

○ Overlapping

Parallelization Strategy

● Partitions an operator into independent tasks

● Configuration also includes the device assignment for each task

○

● Infer the necessary input tensors for each task using the output Tensors

Parallelization Strategy

● Define S that describes one possible parallelization for each operation

● Configurations of each operator can be randomly chosen

Choosing strategy: Execution simulator

● Assumptions
○ Input independent and predictable execution time with low variance

○ Communication bandwidth can be fully utilized

○ FIFO scheduling policy

○ Negligible runtime overhead

Construct a task graph

1. Two kinds of tasks: Normal (compute, communicate, Edge (dependency)

2. Place all tasks of an operation in the graph

3. Connect the input and output tensors (device placement)

4. If two connected tasks are on the same device, add an edge

5. Else, add a communication task

Simulate

● Fill in a number of properties
○ Device
○ exeTime
○ …

● Run a variant of Dijkstra’s algorithm
● Dequeue in order of ready time

Optimize task graph

● Introduces “Delta simulation algorithm”
○ Change configuration of one operator at a time

○ Only resimulate the affected operations

● Search
○ Use existing strategy (only data parallel, expert tuned) as initial condition

○ Replace one operator configuration at a time (randomly) by a random config

○ Use expected execution as cost function for minimization

Implementation

● FlexFlow (Not the one in HPCA’17 ?)

● cuDNN

● cuBLAS

● Legion (Task based runtime, SC’12)

Evaluation: Applications

Evaluation: Platforms

Evaluation: Configuration search

● Data parallelism as initial condition

● 30 minutes search budget

Three figure of merits

End-to-end training performance

Speedup of configuration search time using Delta

Simulation Accuracy

Conclusion

● FlexFlow that uses SOAP: A lower granularity of parallelization

● Transforming into a “task” runtime problem

● Uses traditional optimization techniques

Discussion

● What are the alternatives to task based runtime in this context?

● Can this scheme be modeled as a traditional parallel application?

● Is the full bandwidth utilization assumption over optimistic?

ZeRO: Memory Optimizations Toward Training
Trillion Parameter Models

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, Yuxiong He

2019, Microsoft

Data Parallelism (DP)

● Compute/communication efficiency
● Poor memory efficiency

Model Parallelism (MP)

● Favourable memory efficiency
● Poor compute/communication efficiency

Redundant memory allocation Expensive communication

Both keep all the model states over entire training process

Zero Redundancy Optimizer (ZeRO)

Goal: Achieve the best of both worlds

Contribution:

Reduce per-device memory footprint linearly with the increased degree of parallelism while
keeping communication close to that of default DP

1. Improved training speed for large models
2. Independence of model size

Make full aggregate memory capacity of a cluster available while remaining efficient

An Example
1.5B parameter GPT-2 trained with ADAM

● Weights/parameters: 3GB with fp16 (2𝚿)
● Gradients: 3GB with fp16 (2𝚿)
● Optimizer state: fp32 copy of parameters, momentum, variance -> 18GB (4𝚿+4𝚿+4𝚿)

Residual memory:

● Activations: for a GPT like model 12 * hidden_dim * batch * seq_length * transformer_layers (60 GB)
○ Checkpointing: trading-off memory for computation

● Temporary buffers: Gradient fusion for improved device throughput (6GB)
● Memory fragmentation: long-lived vs. short-lived memory

○ Reduces practically available amount of memory
○ OOM with over 30% memory still available

Optimizing Model State Memory (ZeRO-DP)
Assumption: For large models, the majority of the memory is occupied by model states which includes

optimizer states (momentum, variances), gradients and parameters.

Memory Reduction

4x

8x

Linear with Nd

Optimizing Rrsidual State Memory (Zero-R)
That is: Activation, temporary buffers and unusable fragmented memory.

1. Activation partitioning and CPU offloading
2. Constant size temporary buffer size
3. Proactive management of memory with respect to tensor lifetime.

Do we still need MP, and when?
ZeRO-DP is at least as effective in reducing memory as MP, or even more effective when MP cannot
divide model evenly. + scales better.

1. MP can be extended with ZeRO-R
2. Smaller models, MP might have better convergence due to large batch size in Zero-DP.

Relation to Other Optimizations
Pipeline Parallelism:

Often incurs functionality, performance and convergence

Activation Memory Optimization:
Compression, checkpointing or live analysis (complementary)

CPU Offloading:
Can be avoided due to memory reduction

Memory efficient optimizers:
Impact convergence (orthogonal, ZeRO does not change the optimizer)

Training Optimizers:
ZeRO makes more sophisticated optimizers possible

ZeRO-DP

https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/

Zero-DP

GPU0 initially has parameters of M0 -> broadcast

1,2,3 delete parameters and 1 continues broadcasting parameters of M1

Forward Pass complete -> Loss

The Backward Pass starts on M3

M3 on all devices

To Start M2, GPU2 broadcasts parameters

Update Parameters For Local Partition

Optimizer Runs in Parallel

Iteration Complete

Analysis

All-gather over parameters is spread over entire forward
pass, but needs to happen again for backward pass as
parameters are discarded.

Results
ZeRO vs. Megatron-LM (MP) and PyTorch Distributed Data Parallel (Baseline without MP)

 400 V100 GPUs

No MP, up to 13B parameters on
128 GPUs

1.4B

Super-Linear Scalability - 60B parameters

Trillion PArameters Possible?
Theoretically yes, when combined with MP and with 1024 GPUs

- 16-way model parallelism (intra DGX-2 node)
- 64-way data parallelism

Turing-NLP: 17B

GPT-3: 175B

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

	pbs@ARFix@1:
	pbs@ARFix@3:
	pbs@ARFix@4:
	pbs@ARFix@5:
	pbs@ARFix@2:
	pbs@ARFix@14:
	pbs@ARFix@12:
	pbs@ARFix@13:
	pbs@ARFix@16:
	pbs@ARFix@11:
	pbs@ARFix@15:
	pbs@ARFix@10:
	pbs@ARFix@9:
	pbs@ARFix@8:
	pbs@ARFix@6:
	pbs@ARFix@7:

