
Distributed Machine Learning Frameworks

Amir H. Payberah
payberah@kth.se

2020-12-07

The Course Web Page

https://fid3024.github.io

1 / 64

Review of the Current Frameworks

2 / 64

TensorFlow (1/4)

I TensorFlow supports data parallelism and model partitioning (as of v0.8).

I As of v2.2, the Multi Worker Mirrored Strategy (allreduce) is integrated into Tensor-
Flow for data parallelism.

• Its update rule is synchronous and it has communication and computation overlapped.

I TensorFlow also has extensions to support different parallelization approaches.

3 / 64

TensorFlow (1/4)

I TensorFlow supports data parallelism and model partitioning (as of v0.8).

I As of v2.2, the Multi Worker Mirrored Strategy (allreduce) is integrated into Tensor-
Flow for data parallelism.

• Its update rule is synchronous and it has communication and computation overlapped.

I TensorFlow also has extensions to support different parallelization approaches.

3 / 64

TensorFlow (1/4)

I TensorFlow supports data parallelism and model partitioning (as of v0.8).

I As of v2.2, the Multi Worker Mirrored Strategy (allreduce) is integrated into Tensor-
Flow for data parallelism.

• Its update rule is synchronous and it has communication and computation overlapped.

I TensorFlow also has extensions to support different parallelization approaches.

3 / 64

TensorFlow (1/4)

I TensorFlow supports data parallelism and model partitioning (as of v0.8).

I As of v2.2, the Multi Worker Mirrored Strategy (allreduce) is integrated into Tensor-
Flow for data parallelism.

• Its update rule is synchronous and it has communication and computation overlapped.

I TensorFlow also has extensions to support different parallelization approaches.

3 / 64

TensorFlow (2/4)

I Mesh-TensorFlow is a language for distributed deep learning in TensorFlow.

I It is capable of specifying a broad class of distributed tensor computations.

I Mainly used for model parallelism in TensorFlow.

I A mesh is an n-dimensional array of processors, connected by a network.

I Each tensor is distributed across all processors in a mesh.

4 / 64

TensorFlow (2/4)

I Mesh-TensorFlow is a language for distributed deep learning in TensorFlow.

I It is capable of specifying a broad class of distributed tensor computations.

I Mainly used for model parallelism in TensorFlow.

I A mesh is an n-dimensional array of processors, connected by a network.

I Each tensor is distributed across all processors in a mesh.

4 / 64

TensorFlow (2/4)

I Mesh-TensorFlow is a language for distributed deep learning in TensorFlow.

I It is capable of specifying a broad class of distributed tensor computations.

I Mainly used for model parallelism in TensorFlow.

I A mesh is an n-dimensional array of processors, connected by a network.

I Each tensor is distributed across all processors in a mesh.

4 / 64

TensorFlow (2/4)

I Mesh-TensorFlow is a language for distributed deep learning in TensorFlow.

I It is capable of specifying a broad class of distributed tensor computations.

I Mainly used for model parallelism in TensorFlow.

I A mesh is an n-dimensional array of processors, connected by a network.

I Each tensor is distributed across all processors in a mesh.

4 / 64

TensorFlow (2/4)

I Mesh-TensorFlow is a language for distributed deep learning in TensorFlow.

I It is capable of specifying a broad class of distributed tensor computations.

I Mainly used for model parallelism in TensorFlow.

I A mesh is an n-dimensional array of processors, connected by a network.

I Each tensor is distributed across all processors in a mesh.

4 / 64

TensorFlow (3/4)

I GPipe is a pipeline parallelism library implemented under Lingvo (a TensorFlow frame-
work focusing on seq-to-seq models).

I Partitions operation in the forward and backward pass and allows data transfer be-
tween neighboring partitions.

[Huang et al., GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism, 2019]

5 / 64

TensorFlow (3/4)

I GPipe is a pipeline parallelism library implemented under Lingvo (a TensorFlow frame-
work focusing on seq-to-seq models).

I Partitions operation in the forward and backward pass and allows data transfer be-
tween neighboring partitions.

[Huang et al., GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism, 2019]

5 / 64

TensorFlow (4/4)

I HyPar-Flow is an implementation of data, model, and hybrid parallelization on Eager
TensorFlow.

I It only requires the strategy, the number of model partitions, and the number of model
replicas from the user to utilize them with every possible intra-iteration parallelization.

[Awan et al., HyPar-Flow: Exploiting MPI and Keras for Scalable Hybrid-Parallel DNN Training with TensorFlow, 2020]

6 / 64

TensorFlow (4/4)

I HyPar-Flow is an implementation of data, model, and hybrid parallelization on Eager
TensorFlow.

I It only requires the strategy, the number of model partitions, and the number of model
replicas from the user to utilize them with every possible intra-iteration parallelization.

[Awan et al., HyPar-Flow: Exploiting MPI and Keras for Scalable Hybrid-Parallel DNN Training with TensorFlow, 2020]

6 / 64

PyTorch (1/4)

I Caffe is a DL framework that does not support distributed training out-of-the-box.

I Many extensions of Caffe to support distributed training centralized or decentralized.

I FireCaffe and MPI-Caffe support data and model parallelism on multi-GPU clusters,
respectively.

I Intel-Caffe and NUMA-Caffe support data parallelism training on CPU-based clusters.

I S-Caffe is a CUDA-Aware MPI runtime and Caffe for data parallelism on GPU clus-
ters.

7 / 64

PyTorch (1/4)

I Caffe is a DL framework that does not support distributed training out-of-the-box.

I Many extensions of Caffe to support distributed training centralized or decentralized.

I FireCaffe and MPI-Caffe support data and model parallelism on multi-GPU clusters,
respectively.

I Intel-Caffe and NUMA-Caffe support data parallelism training on CPU-based clusters.

I S-Caffe is a CUDA-Aware MPI runtime and Caffe for data parallelism on GPU clus-
ters.

7 / 64

PyTorch (1/4)

I Caffe is a DL framework that does not support distributed training out-of-the-box.

I Many extensions of Caffe to support distributed training centralized or decentralized.

I FireCaffe and MPI-Caffe support data and model parallelism on multi-GPU clusters,
respectively.

I Intel-Caffe and NUMA-Caffe support data parallelism training on CPU-based clusters.

I S-Caffe is a CUDA-Aware MPI runtime and Caffe for data parallelism on GPU clus-
ters.

7 / 64

PyTorch (1/4)

I Caffe is a DL framework that does not support distributed training out-of-the-box.

I Many extensions of Caffe to support distributed training centralized or decentralized.

I FireCaffe and MPI-Caffe support data and model parallelism on multi-GPU clusters,
respectively.

I Intel-Caffe and NUMA-Caffe support data parallelism training on CPU-based clusters.

I S-Caffe is a CUDA-Aware MPI runtime and Caffe for data parallelism on GPU clus-
ters.

7 / 64

PyTorch (1/4)

I Caffe is a DL framework that does not support distributed training out-of-the-box.

I Many extensions of Caffe to support distributed training centralized or decentralized.

I FireCaffe and MPI-Caffe support data and model parallelism on multi-GPU clusters,
respectively.

I Intel-Caffe and NUMA-Caffe support data parallelism training on CPU-based clusters.

I S-Caffe is a CUDA-Aware MPI runtime and Caffe for data parallelism on GPU clus-
ters.

7 / 64

PyTorch (2/4)

I Chainer is a Define-by-Run (imperative) DL framework.

I It only supports data parallelism.

I It has a synchronous decentralized design for allreduce communication.

8 / 64

PyTorch (2/4)

I Chainer is a Define-by-Run (imperative) DL framework.

I It only supports data parallelism.

I It has a synchronous decentralized design for allreduce communication.

8 / 64

PyTorch (2/4)

I Chainer is a Define-by-Run (imperative) DL framework.

I It only supports data parallelism.

I It has a synchronous decentralized design for allreduce communication.

8 / 64

PyTorch (3/4)

I PyTorch is a successor of Caffe2, which is inspired by Chainer.

I It is an imperative DL framework using dynamic computation graphs and automatic
differentiation.

I PyTorch mainly focuses on ease of use, and enables users with options in training
their models.

I PyTorch RPC is developed to support model parallelism.

9 / 64

PyTorch (3/4)

I PyTorch is a successor of Caffe2, which is inspired by Chainer.

I It is an imperative DL framework using dynamic computation graphs and automatic
differentiation.

I PyTorch mainly focuses on ease of use, and enables users with options in training
their models.

I PyTorch RPC is developed to support model parallelism.

9 / 64

PyTorch (3/4)

I PyTorch is a successor of Caffe2, which is inspired by Chainer.

I It is an imperative DL framework using dynamic computation graphs and automatic
differentiation.

I PyTorch mainly focuses on ease of use, and enables users with options in training
their models.

I PyTorch RPC is developed to support model parallelism.

9 / 64

PyTorch (3/4)

I PyTorch is a successor of Caffe2, which is inspired by Chainer.

I It is an imperative DL framework using dynamic computation graphs and automatic
differentiation.

I PyTorch mainly focuses on ease of use, and enables users with options in training
their models.

I PyTorch RPC is developed to support model parallelism.

9 / 64

PyTorch (4/4)

I PyTorch Distributed Data Parallel (DPP) is an extra feature to PyTorch (available
as of v1.5).

I PyTorch DDP utilizes some techniques to increase performance, such as

• Gradient bucketing (small tensors bucket into one allreduce operation)
• Overlapping communication with computation
• Skipping synchronization

10 / 64

PyTorch (4/4)

I PyTorch Distributed Data Parallel (DPP) is an extra feature to PyTorch (available
as of v1.5).

I PyTorch DDP utilizes some techniques to increase performance, such as

• Gradient bucketing (small tensors bucket into one allreduce operation)
• Overlapping communication with computation
• Skipping synchronization

10 / 64

PyTorch (4/4)

I PyTorch Distributed Data Parallel (DPP) is an extra feature to PyTorch (available
as of v1.5).

I PyTorch DDP utilizes some techniques to increase performance, such as
• Gradient bucketing (small tensors bucket into one allreduce operation)

• Overlapping communication with computation
• Skipping synchronization

10 / 64

PyTorch (4/4)

I PyTorch Distributed Data Parallel (DPP) is an extra feature to PyTorch (available
as of v1.5).

I PyTorch DDP utilizes some techniques to increase performance, such as
• Gradient bucketing (small tensors bucket into one allreduce operation)
• Overlapping communication with computation

• Skipping synchronization

10 / 64

PyTorch (4/4)

I PyTorch Distributed Data Parallel (DPP) is an extra feature to PyTorch (available
as of v1.5).

I PyTorch DDP utilizes some techniques to increase performance, such as
• Gradient bucketing (small tensors bucket into one allreduce operation)
• Overlapping communication with computation
• Skipping synchronization

10 / 64

MXNet (1/2)

I MXNet is a multi-language ML library.

I It blends declarative symbolic expression with imperative tensor computation.

I It uses a distributed key-value store for data synchronization over multiple devices.

11 / 64

MXNet (1/2)

I MXNet is a multi-language ML library.

I It blends declarative symbolic expression with imperative tensor computation.

I It uses a distributed key-value store for data synchronization over multiple devices.

11 / 64

MXNet (1/2)

I MXNet is a multi-language ML library.

I It blends declarative symbolic expression with imperative tensor computation.

I It uses a distributed key-value store for data synchronization over multiple devices.

11 / 64

MXNet (2/2)

I MXNet-MPI is the extension of MXNet that replaces each worker in a parameter
server architecture with a group of workers.

I Workers of each group are synced together using an MPI collective operation.

[Mamidala et al., MXNet-MPI: Embedding MPI parallelism in Parameter Server Task Model for Scaling Deep Learning, 2018]

12 / 64

MXNet (2/2)

I MXNet-MPI is the extension of MXNet that replaces each worker in a parameter
server architecture with a group of workers.

I Workers of each group are synced together using an MPI collective operation.

[Mamidala et al., MXNet-MPI: Embedding MPI parallelism in Parameter Server Task Model for Scaling Deep Learning, 2018]

12 / 64

Horovod

I Horovod is a stand-alone Python library for data parallelism using an optimized
ring allreduce collective and a tensor fusion algorithm.

I It works on top of another DL framework (e.g., TensorFlow, PyTorch, and MXNET).

I It has one of the most optimized asynchronous collectives.

I However, the communication overhead significantly grows with the number of nodes.

13 / 64

Horovod

I Horovod is a stand-alone Python library for data parallelism using an optimized
ring allreduce collective and a tensor fusion algorithm.

I It works on top of another DL framework (e.g., TensorFlow, PyTorch, and MXNET).

I It has one of the most optimized asynchronous collectives.

I However, the communication overhead significantly grows with the number of nodes.

13 / 64

Horovod

I Horovod is a stand-alone Python library for data parallelism using an optimized
ring allreduce collective and a tensor fusion algorithm.

I It works on top of another DL framework (e.g., TensorFlow, PyTorch, and MXNET).

I It has one of the most optimized asynchronous collectives.

I However, the communication overhead significantly grows with the number of nodes.

13 / 64

Horovod

I Horovod is a stand-alone Python library for data parallelism using an optimized
ring allreduce collective and a tensor fusion algorithm.

I It works on top of another DL framework (e.g., TensorFlow, PyTorch, and MXNET).

I It has one of the most optimized asynchronous collectives.

I However, the communication overhead significantly grows with the number of nodes.

13 / 64

FlexFlow

I FlexFlow can parallelize a DNN in the Sample, Operation, Attribute, and Parameter
(SOAP) dimensions.

I It uses guided randomized search of the SOAP space to find a fast parallelization
strategy for a specific parallel machine.

[Jia et al., Beyond Data and Model Parallelism for Deep Neural Networks, 2019]

14 / 64

FlexFlow

I FlexFlow can parallelize a DNN in the Sample, Operation, Attribute, and Parameter
(SOAP) dimensions.

I It uses guided randomized search of the SOAP space to find a fast parallelization
strategy for a specific parallel machine.

[Jia et al., Beyond Data and Model Parallelism for Deep Neural Networks, 2019]

14 / 64

BigDL

I BigDL is a distributed DL framework for data parallelism on top of Spark.

I It does not support model parallelism.

I It favors coarse-grained operations where data transformations are immutable.

I It runs a series of Spark jobs, which are scheduled by Spark.

I Due to using Spark, it is equipped with fault tolerance and a fair load balancing
mechanism.

15 / 64

BigDL

I BigDL is a distributed DL framework for data parallelism on top of Spark.

I It does not support model parallelism.

I It favors coarse-grained operations where data transformations are immutable.

I It runs a series of Spark jobs, which are scheduled by Spark.

I Due to using Spark, it is equipped with fault tolerance and a fair load balancing
mechanism.

15 / 64

BigDL

I BigDL is a distributed DL framework for data parallelism on top of Spark.

I It does not support model parallelism.

I It favors coarse-grained operations where data transformations are immutable.

I It runs a series of Spark jobs, which are scheduled by Spark.

I Due to using Spark, it is equipped with fault tolerance and a fair load balancing
mechanism.

15 / 64

BigDL

I BigDL is a distributed DL framework for data parallelism on top of Spark.

I It does not support model parallelism.

I It favors coarse-grained operations where data transformations are immutable.

I It runs a series of Spark jobs, which are scheduled by Spark.

I Due to using Spark, it is equipped with fault tolerance and a fair load balancing
mechanism.

15 / 64

BigDL

I BigDL is a distributed DL framework for data parallelism on top of Spark.

I It does not support model parallelism.

I It favors coarse-grained operations where data transformations are immutable.

I It runs a series of Spark jobs, which are scheduled by Spark.

I Due to using Spark, it is equipped with fault tolerance and a fair load balancing
mechanism.

15 / 64

ZeRO and DeepSpeed

I ZeRO focuses on solving the memory limitation problem while attempting to minimize
the overhead.

I It partitions activations, optimizer states, gradients, and parameters and distributes
them equally overall available nodes.

I It then employs overlapping collective operations to reconstruct the tensors as needed.

I DeepSpeed brings ZeRO techniques through lightweight APIs compatible with Py-
Torch.

16 / 64

ZeRO and DeepSpeed

I ZeRO focuses on solving the memory limitation problem while attempting to minimize
the overhead.

I It partitions activations, optimizer states, gradients, and parameters and distributes
them equally overall available nodes.

I It then employs overlapping collective operations to reconstruct the tensors as needed.

I DeepSpeed brings ZeRO techniques through lightweight APIs compatible with Py-
Torch.

16 / 64

ZeRO and DeepSpeed

I ZeRO focuses on solving the memory limitation problem while attempting to minimize
the overhead.

I It partitions activations, optimizer states, gradients, and parameters and distributes
them equally overall available nodes.

I It then employs overlapping collective operations to reconstruct the tensors as needed.

I DeepSpeed brings ZeRO techniques through lightweight APIs compatible with Py-
Torch.

16 / 64

ZeRO and DeepSpeed

I ZeRO focuses on solving the memory limitation problem while attempting to minimize
the overhead.

I It partitions activations, optimizer states, gradients, and parameters and distributes
them equally overall available nodes.

I It then employs overlapping collective operations to reconstruct the tensors as needed.

I DeepSpeed brings ZeRO techniques through lightweight APIs compatible with Py-
Torch.

16 / 64

BigDL: A Distributed Deep Learning
Framework for Big Data

17 / 64

Big Data vs. Deep Learning Frameworks

I Big data and deep learning systems have different distributed execution model.

I Big data tasks are embarrassingly parallel and independent of each other.

I Deep learning tasks need to coordinate with and depend on others.

I Several connectors, e.g., TFX, CaffeOnSpark, TensorFlowOnSpark, SageMaker.

I However, the adaptation between different frameworks can impose very large over-
heads in practice.

18 / 64

Big Data vs. Deep Learning Frameworks

I Big data and deep learning systems have different distributed execution model.

I Big data tasks are embarrassingly parallel and independent of each other.

I Deep learning tasks need to coordinate with and depend on others.

I Several connectors, e.g., TFX, CaffeOnSpark, TensorFlowOnSpark, SageMaker.

I However, the adaptation between different frameworks can impose very large over-
heads in practice.

18 / 64

Big Data vs. Deep Learning Frameworks

I Big data and deep learning systems have different distributed execution model.

I Big data tasks are embarrassingly parallel and independent of each other.

I Deep learning tasks need to coordinate with and depend on others.

I Several connectors, e.g., TFX, CaffeOnSpark, TensorFlowOnSpark, SageMaker.

I However, the adaptation between different frameworks can impose very large over-
heads in practice.

18 / 64

Big Data vs. Deep Learning Frameworks

I Big data and deep learning systems have different distributed execution model.

I Big data tasks are embarrassingly parallel and independent of each other.

I Deep learning tasks need to coordinate with and depend on others.

I Several connectors, e.g., TFX, CaffeOnSpark, TensorFlowOnSpark, SageMaker.

I However, the adaptation between different frameworks can impose very large over-
heads in practice.

18 / 64

Big Data vs. Deep Learning Frameworks

I Big data and deep learning systems have different distributed execution model.

I Big data tasks are embarrassingly parallel and independent of each other.

I Deep learning tasks need to coordinate with and depend on others.

I Several connectors, e.g., TFX, CaffeOnSpark, TensorFlowOnSpark, SageMaker.

I However, the adaptation between different frameworks can impose very large over-
heads in practice.

18 / 64

Spark Dataflow Model

I Job is described based on directed acyclic graphs (DAG) data flow.

I A data flow is composed of any number of data sources, operators, and data sinks
by connecting their inputs and outputs.

I Parallelizable operators

19 / 64

Spark Dataflow Model

I Job is described based on directed acyclic graphs (DAG) data flow.

I A data flow is composed of any number of data sources, operators, and data sinks
by connecting their inputs and outputs.

I Parallelizable operators

19 / 64

Spark Dataflow Model

I Job is described based on directed acyclic graphs (DAG) data flow.

I A data flow is composed of any number of data sources, operators, and data sinks
by connecting their inputs and outputs.

I Parallelizable operators

19 / 64

Resilient Distributed Datasets (RDD) (1/2)

I A distributed memory abstraction.

I Immutable collections of objects spread across a cluster.
• Like a LinkedList <MyObjects>

20 / 64

Resilient Distributed Datasets (RDD) (2/2)

I An RDD is divided into a number of partitions, which are atomic pieces of information.

I Partitions of an RDD can be stored on different nodes of a cluster.

21 / 64

Spark Execution Model

[Dai et al., BigDL: A Distributed Deep Learning Framework for Big Data, 2019]

22 / 64

BigDL

I Directly implements the distributed deep learning support in Spark.

I An data-analytics integrated deep learning pipeline can be executed as a standard
Spark jobs.

23 / 64

BigDL

I Directly implements the distributed deep learning support in Spark.

I An data-analytics integrated deep learning pipeline can be executed as a standard
Spark jobs.

23 / 64

BigDL

I Directly implements the distributed deep learning support in Spark.

I An data-analytics integrated deep learning pipeline can be executed as a standard
Spark jobs.

23 / 64

Data-Parallel Training in BigDL (1/3)

I BigDL provides synchronous data-parallel training to train an NN model.

I RDD of Samples, which are automatically partitioned across the Spark cluster.

I RDD of models, each of which is a replica of the original NN model.

[Dai et al., BigDL: A Distributed Deep Learning Framework for Big Data, 2019]

24 / 64

Data-Parallel Training in BigDL (1/3)

I BigDL provides synchronous data-parallel training to train an NN model.

I RDD of Samples, which are automatically partitioned across the Spark cluster.

I RDD of models, each of which is a replica of the original NN model.

[Dai et al., BigDL: A Distributed Deep Learning Framework for Big Data, 2019]

24 / 64

Data-Parallel Training in BigDL (1/3)

I BigDL provides synchronous data-parallel training to train an NN model.

I RDD of Samples, which are automatically partitioned across the Spark cluster.

I RDD of models, each of which is a replica of the original NN model.

[Dai et al., BigDL: A Distributed Deep Learning Framework for Big Data, 2019]

24 / 64

Data-Parallel Training in BigDL (2/3)

I In each iteration, a single model forward-backward Spark job.

I Applies the functional zip operator to the co-located partitions of the two RDDs.

I Then, computes the local gradients in parallel for each model replica.

[Dai et al., BigDL: A Distributed Deep Learning Framework for Big Data, 2019]

25 / 64

Data-Parallel Training in BigDL (2/3)

I In each iteration, a single model forward-backward Spark job.

I Applies the functional zip operator to the co-located partitions of the two RDDs.

I Then, computes the local gradients in parallel for each model replica.

[Dai et al., BigDL: A Distributed Deep Learning Framework for Big Data, 2019]

25 / 64

Data-Parallel Training in BigDL (2/3)

I In each iteration, a single model forward-backward Spark job.

I Applies the functional zip operator to the co-located partitions of the two RDDs.

I Then, computes the local gradients in parallel for each model replica.

[Dai et al., BigDL: A Distributed Deep Learning Framework for Big Data, 2019]

25 / 64

Data-Parallel Training in BigDL (3/3)

[Dai et al., BigDL: A Distributed Deep Learning Framework for Big Data, 2019]

26 / 64

Parameter Synchronization in BigDL (1/2)

I Parameter synchronization based using parameter server or AllReduce requires fine-
grained data access.

I Fine-grained operations are not supported by Spark.

I BigDL directly implements an efficient AllReduce-like operation using existing prim-
itives in Spark.

27 / 64

Parameter Synchronization in BigDL (1/2)

I Parameter synchronization based using parameter server or AllReduce requires fine-
grained data access.

I Fine-grained operations are not supported by Spark.

I BigDL directly implements an efficient AllReduce-like operation using existing prim-
itives in Spark.

27 / 64

Parameter Synchronization in BigDL (1/2)

I Parameter synchronization based using parameter server or AllReduce requires fine-
grained data access.

I Fine-grained operations are not supported by Spark.

I BigDL directly implements an efficient AllReduce-like operation using existing prim-
itives in Spark.

27 / 64

Parameter Synchronization in BigDL (2/2)

[Dai et al., BigDL: A Distributed Deep Learning Framework for Big Data, 2019]

28 / 64

PyTorch Distributed: Experiences on
Accelerating Data Parallel Training

29 / 64

PyTorch (1/2)

I PyTorch organizes values into Tensors, generic n-dimensional arrays.

I A Module defines a transform from input values to output values.

• In this calss, applications provide their model at construction time.
• Its behavior during the forward pass is specified by its forward member function.

I A Module can contain Tensors as parameters.

• A LinearModule contains a weight and a bias parameter.
• Whose forward function generates the output by multiplying the input with the weight

and adding the bias.

I An application composes its own Module by stitching together Modules (e.g., linear,
convolution) and Functions (e.g., relu, pool) in a forward function.

30 / 64

PyTorch (1/2)

I PyTorch organizes values into Tensors, generic n-dimensional arrays.

I A Module defines a transform from input values to output values.

• In this calss, applications provide their model at construction time.
• Its behavior during the forward pass is specified by its forward member function.

I A Module can contain Tensors as parameters.

• A LinearModule contains a weight and a bias parameter.
• Whose forward function generates the output by multiplying the input with the weight

and adding the bias.

I An application composes its own Module by stitching together Modules (e.g., linear,
convolution) and Functions (e.g., relu, pool) in a forward function.

30 / 64

PyTorch (1/2)

I PyTorch organizes values into Tensors, generic n-dimensional arrays.

I A Module defines a transform from input values to output values.
• In this calss, applications provide their model at construction time.

• Its behavior during the forward pass is specified by its forward member function.

I A Module can contain Tensors as parameters.

• A LinearModule contains a weight and a bias parameter.
• Whose forward function generates the output by multiplying the input with the weight

and adding the bias.

I An application composes its own Module by stitching together Modules (e.g., linear,
convolution) and Functions (e.g., relu, pool) in a forward function.

30 / 64

PyTorch (1/2)

I PyTorch organizes values into Tensors, generic n-dimensional arrays.

I A Module defines a transform from input values to output values.
• In this calss, applications provide their model at construction time.
• Its behavior during the forward pass is specified by its forward member function.

I A Module can contain Tensors as parameters.

• A LinearModule contains a weight and a bias parameter.
• Whose forward function generates the output by multiplying the input with the weight

and adding the bias.

I An application composes its own Module by stitching together Modules (e.g., linear,
convolution) and Functions (e.g., relu, pool) in a forward function.

30 / 64

PyTorch (1/2)

I PyTorch organizes values into Tensors, generic n-dimensional arrays.

I A Module defines a transform from input values to output values.
• In this calss, applications provide their model at construction time.
• Its behavior during the forward pass is specified by its forward member function.

I A Module can contain Tensors as parameters.

• A LinearModule contains a weight and a bias parameter.
• Whose forward function generates the output by multiplying the input with the weight

and adding the bias.

I An application composes its own Module by stitching together Modules (e.g., linear,
convolution) and Functions (e.g., relu, pool) in a forward function.

30 / 64

PyTorch (1/2)

I PyTorch organizes values into Tensors, generic n-dimensional arrays.

I A Module defines a transform from input values to output values.
• In this calss, applications provide their model at construction time.
• Its behavior during the forward pass is specified by its forward member function.

I A Module can contain Tensors as parameters.
• A LinearModule contains a weight and a bias parameter.

• Whose forward function generates the output by multiplying the input with the weight
and adding the bias.

I An application composes its own Module by stitching together Modules (e.g., linear,
convolution) and Functions (e.g., relu, pool) in a forward function.

30 / 64

PyTorch (1/2)

I PyTorch organizes values into Tensors, generic n-dimensional arrays.

I A Module defines a transform from input values to output values.
• In this calss, applications provide their model at construction time.
• Its behavior during the forward pass is specified by its forward member function.

I A Module can contain Tensors as parameters.
• A LinearModule contains a weight and a bias parameter.
• Whose forward function generates the output by multiplying the input with the weight

and adding the bias.

I An application composes its own Module by stitching together Modules (e.g., linear,
convolution) and Functions (e.g., relu, pool) in a forward function.

30 / 64

PyTorch (1/2)

I PyTorch organizes values into Tensors, generic n-dimensional arrays.

I A Module defines a transform from input values to output values.
• In this calss, applications provide their model at construction time.
• Its behavior during the forward pass is specified by its forward member function.

I A Module can contain Tensors as parameters.
• A LinearModule contains a weight and a bias parameter.
• Whose forward function generates the output by multiplying the input with the weight

and adding the bias.

I An application composes its own Module by stitching together Modules (e.g., linear,
convolution) and Functions (e.g., relu, pool) in a forward function.

30 / 64

PyTorch (2/2)

31 / 64

Data Parallelism in PyTorch (1/4)

I PyTorch provides distributed data parallel as an nn.Module class.

I All replicas start from the same initial values for model parameters.

I They synchronize gradients to keep parameters consistent across training iterations.

32 / 64

Data Parallelism in PyTorch (1/4)

I PyTorch provides distributed data parallel as an nn.Module class.

I All replicas start from the same initial values for model parameters.

I They synchronize gradients to keep parameters consistent across training iterations.

32 / 64

Data Parallelism in PyTorch (1/4)

I PyTorch provides distributed data parallel as an nn.Module class.

I All replicas start from the same initial values for model parameters.

I They synchronize gradients to keep parameters consistent across training iterations.

32 / 64

Data Parallelism in PyTorch (2/4)

I PyTorch offers several tools to facilitate distributed training.

I DataParallel for data parallel training on the same machine.

I DistributedDataParallel (DDP) for data parallel training across GPUs and ma-
chines.

I RPC for general distributed model parallel training.

33 / 64

Data Parallelism in PyTorch (2/4)

I PyTorch offers several tools to facilitate distributed training.

I DataParallel for data parallel training on the same machine.

I DistributedDataParallel (DDP) for data parallel training across GPUs and ma-
chines.

I RPC for general distributed model parallel training.

33 / 64

Data Parallelism in PyTorch (2/4)

I PyTorch offers several tools to facilitate distributed training.

I DataParallel for data parallel training on the same machine.

I DistributedDataParallel (DDP) for data parallel training across GPUs and ma-
chines.

I RPC for general distributed model parallel training.

33 / 64

Data Parallelism in PyTorch (2/4)

I PyTorch offers several tools to facilitate distributed training.

I DataParallel for data parallel training on the same machine.

I DistributedDataParallel (DDP) for data parallel training across GPUs and ma-
chines.

I RPC for general distributed model parallel training.

33 / 64

Data Parallelism in PyTorch (3/4)

I DDP module enables data parallel training across multiple processes and machines.

I AllReduce is the primitive communication API used by DDP.

I It is supported by multiple communication libraries, including NCCL, Gloo, and MPI.

[Li et al., PyTorch Distributed: Experiences on Accelerating Data Parallel Training, 2020]

34 / 64

Data Parallelism in PyTorch (3/4)

I DDP module enables data parallel training across multiple processes and machines.

I AllReduce is the primitive communication API used by DDP.

I It is supported by multiple communication libraries, including NCCL, Gloo, and MPI.

[Li et al., PyTorch Distributed: Experiences on Accelerating Data Parallel Training, 2020]

34 / 64

Data Parallelism in PyTorch (3/4)

I DDP module enables data parallel training across multiple processes and machines.

I AllReduce is the primitive communication API used by DDP.

I It is supported by multiple communication libraries, including NCCL, Gloo, and MPI.

[Li et al., PyTorch Distributed: Experiences on Accelerating Data Parallel Training, 2020]

34 / 64

Data Parallelism in PyTorch (4/4)

35 / 64

Data Parallelism in PyTorch (4/4)

35 / 64

Gradient Reduction - Naive Solution (1/3)

I DDP guarantees correctness by letting all training processes:

1. Start from the same model state.
2. Consume the same gradients in every iteration.

I Step 1 can be achieved by broadcasting model states from one process to all others.

I Step 2 can be achieved by inserting a gradient synchronization phase after the local
backward pass and before updating local parameters.

36 / 64

Gradient Reduction - Naive Solution (1/3)

I DDP guarantees correctness by letting all training processes:

1. Start from the same model state.

2. Consume the same gradients in every iteration.

I Step 1 can be achieved by broadcasting model states from one process to all others.

I Step 2 can be achieved by inserting a gradient synchronization phase after the local
backward pass and before updating local parameters.

36 / 64

Gradient Reduction - Naive Solution (1/3)

I DDP guarantees correctness by letting all training processes:

1. Start from the same model state.
2. Consume the same gradients in every iteration.

I Step 1 can be achieved by broadcasting model states from one process to all others.

I Step 2 can be achieved by inserting a gradient synchronization phase after the local
backward pass and before updating local parameters.

36 / 64

Gradient Reduction - Naive Solution (1/3)

I DDP guarantees correctness by letting all training processes:

1. Start from the same model state.
2. Consume the same gradients in every iteration.

I Step 1 can be achieved by broadcasting model states from one process to all others.

I Step 2 can be achieved by inserting a gradient synchronization phase after the local
backward pass and before updating local parameters.

36 / 64

Gradient Reduction - Naive Solution (1/3)

I DDP guarantees correctness by letting all training processes:

1. Start from the same model state.
2. Consume the same gradients in every iteration.

I Step 1 can be achieved by broadcasting model states from one process to all others.

I Step 2 can be achieved by inserting a gradient synchronization phase after the local
backward pass and before updating local parameters.

36 / 64

Gradient Reduction - Naive Solution (2/3)

I To implement the step 2, the PyTorch accepts custom backward hooks.

I DDP can register autograd hooks to trigger computation after every backward pass.

I When fired, each hook scans through all local model parameters, and retrieves the
gradient tensor from each parameter.

I Then, it uses the AllReduce collective communication call to calculate the average
gradients on each parameter across all processes, and writes the result back to the
gradient tensor.

37 / 64

Gradient Reduction - Naive Solution (2/3)

I To implement the step 2, the PyTorch accepts custom backward hooks.

I DDP can register autograd hooks to trigger computation after every backward pass.

I When fired, each hook scans through all local model parameters, and retrieves the
gradient tensor from each parameter.

I Then, it uses the AllReduce collective communication call to calculate the average
gradients on each parameter across all processes, and writes the result back to the
gradient tensor.

37 / 64

Gradient Reduction - Naive Solution (2/3)

I To implement the step 2, the PyTorch accepts custom backward hooks.

I DDP can register autograd hooks to trigger computation after every backward pass.

I When fired, each hook scans through all local model parameters, and retrieves the
gradient tensor from each parameter.

I Then, it uses the AllReduce collective communication call to calculate the average
gradients on each parameter across all processes, and writes the result back to the
gradient tensor.

37 / 64

Gradient Reduction - Naive Solution (2/3)

I To implement the step 2, the PyTorch accepts custom backward hooks.

I DDP can register autograd hooks to trigger computation after every backward pass.

I When fired, each hook scans through all local model parameters, and retrieves the
gradient tensor from each parameter.

I Then, it uses the AllReduce collective communication call to calculate the average
gradients on each parameter across all processes, and writes the result back to the
gradient tensor.

37 / 64

Gradient Reduction - Naive Solution (3/3)

I Two performance concerns:

I 1. Collective communication performs poorly on small tensors, which will be espe-
cially prominent on large models with massive numbers of small parameters.

I 2. Separating gradient computation and synchronization forfeits the opportunity to
overlap computation with communication due to the hard boundary in between.

38 / 64

Gradient Reduction - Naive Solution (3/3)

I Two performance concerns:

I 1. Collective communication performs poorly on small tensors, which will be espe-
cially prominent on large models with massive numbers of small parameters.

I 2. Separating gradient computation and synchronization forfeits the opportunity to
overlap computation with communication due to the hard boundary in between.

38 / 64

Gradient Reduction - Naive Solution (3/3)

I Two performance concerns:

I 1. Collective communication performs poorly on small tensors, which will be espe-
cially prominent on large models with massive numbers of small parameters.

I 2. Separating gradient computation and synchronization forfeits the opportunity to
overlap computation with communication due to the hard boundary in between.

38 / 64

Gradient Reduction - Gradient Bucketing (1/2)

I Collective communications are more efficient on large tensors.

[Li et al., PyTorch Distributed: Experiences on Accelerating Data Parallel Training, 2020]

39 / 64

Gradient Reduction - Gradient Bucketing (2/2)

I Not to launch AllReduce immediately after each gradient tensor becomes available.

I Instead, waits for a short period and buckets multiple gradients into one AllReduce

operation.

I But not to communicate all gradients in one single AllReduce, otherwise, no com-
munication can start before the computation is over.

I With relatively small bucket sizes, DDP can launch AllReduce operations concurrently
with the backward pass to overlap communication with computation.

40 / 64

Gradient Reduction - Gradient Bucketing (2/2)

I Not to launch AllReduce immediately after each gradient tensor becomes available.

I Instead, waits for a short period and buckets multiple gradients into one AllReduce

operation.

I But not to communicate all gradients in one single AllReduce, otherwise, no com-
munication can start before the computation is over.

I With relatively small bucket sizes, DDP can launch AllReduce operations concurrently
with the backward pass to overlap communication with computation.

40 / 64

Gradient Reduction - Gradient Bucketing (2/2)

I Not to launch AllReduce immediately after each gradient tensor becomes available.

I Instead, waits for a short period and buckets multiple gradients into one AllReduce

operation.

I But not to communicate all gradients in one single AllReduce, otherwise, no com-
munication can start before the computation is over.

I With relatively small bucket sizes, DDP can launch AllReduce operations concurrently
with the backward pass to overlap communication with computation.

40 / 64

Gradient Reduction - Gradient Bucketing (2/2)

I Not to launch AllReduce immediately after each gradient tensor becomes available.

I Instead, waits for a short period and buckets multiple gradients into one AllReduce

operation.

I But not to communicate all gradients in one single AllReduce, otherwise, no com-
munication can start before the computation is over.

I With relatively small bucket sizes, DDP can launch AllReduce operations concurrently
with the backward pass to overlap communication with computation.

40 / 64

Overlap Computation with Communication (1/2)

I AllReduce on gradients can start before the local backward pass finishes.

I With bucketing, DDP needs to wait for all contents in the same bucket before launch-
ing communications.

I DDP registers one autograd hook for each gradient accumulator.

I The hook fires after its corresponding accumulator updating the gradients.

I If hooks of all gradients in the same buckets have fired, then AllReduce on that
bucket will be triggered.

41 / 64

Overlap Computation with Communication (1/2)

I AllReduce on gradients can start before the local backward pass finishes.

I With bucketing, DDP needs to wait for all contents in the same bucket before launch-
ing communications.

I DDP registers one autograd hook for each gradient accumulator.

I The hook fires after its corresponding accumulator updating the gradients.

I If hooks of all gradients in the same buckets have fired, then AllReduce on that
bucket will be triggered.

41 / 64

Overlap Computation with Communication (1/2)

I AllReduce on gradients can start before the local backward pass finishes.

I With bucketing, DDP needs to wait for all contents in the same bucket before launch-
ing communications.

I DDP registers one autograd hook for each gradient accumulator.

I The hook fires after its corresponding accumulator updating the gradients.

I If hooks of all gradients in the same buckets have fired, then AllReduce on that
bucket will be triggered.

41 / 64

Overlap Computation with Communication (1/2)

I AllReduce on gradients can start before the local backward pass finishes.

I With bucketing, DDP needs to wait for all contents in the same bucket before launch-
ing communications.

I DDP registers one autograd hook for each gradient accumulator.

I The hook fires after its corresponding accumulator updating the gradients.

I If hooks of all gradients in the same buckets have fired, then AllReduce on that
bucket will be triggered.

41 / 64

Overlap Computation with Communication (1/2)

I AllReduce on gradients can start before the local backward pass finishes.

I With bucketing, DDP needs to wait for all contents in the same bucket before launch-
ing communications.

I DDP registers one autograd hook for each gradient accumulator.

I The hook fires after its corresponding accumulator updating the gradients.

I If hooks of all gradients in the same buckets have fired, then AllReduce on that
bucket will be triggered.

41 / 64

Overlap Computation with Communication (2/2)

I The reducing order must be the same across all processes, otherwise, AllReduce

contents might mismatch.

I All processes must use the same bucketing order

I No process can launch AllReduce on bucket i + 1 before embarking bucket i.

[Li et al., PyTorch Distributed: Experiences on Accelerating Data Parallel Training, 2020]

42 / 64

Overlap Computation with Communication (2/2)

I The reducing order must be the same across all processes, otherwise, AllReduce

contents might mismatch.

I All processes must use the same bucketing order

I No process can launch AllReduce on bucket i + 1 before embarking bucket i.

[Li et al., PyTorch Distributed: Experiences on Accelerating Data Parallel Training, 2020]

42 / 64

Overlap Computation with Communication (2/2)

I The reducing order must be the same across all processes, otherwise, AllReduce

contents might mismatch.

I All processes must use the same bucketing order

I No process can launch AllReduce on bucket i + 1 before embarking bucket i.

[Li et al., PyTorch Distributed: Experiences on Accelerating Data Parallel Training, 2020]

42 / 64

Gradient Accumulation

I Reduce gradient synchronization frequencies to speed up distributed data parallel
training.

I Instead of launching AllReduce in every iteration, it can conduct n local training
iterations before synchronizing gradients globally.

I Helpful if the input batch is too large to fit into a device.

• It can split one input batch into multiple micro-batches.
• Run local forward and backward passes on every micro-batch.
• Only launch gradient synchronization at the boundaries of large batches.

43 / 64

Gradient Accumulation

I Reduce gradient synchronization frequencies to speed up distributed data parallel
training.

I Instead of launching AllReduce in every iteration, it can conduct n local training
iterations before synchronizing gradients globally.

I Helpful if the input batch is too large to fit into a device.

• It can split one input batch into multiple micro-batches.
• Run local forward and backward passes on every micro-batch.
• Only launch gradient synchronization at the boundaries of large batches.

43 / 64

Gradient Accumulation

I Reduce gradient synchronization frequencies to speed up distributed data parallel
training.

I Instead of launching AllReduce in every iteration, it can conduct n local training
iterations before synchronizing gradients globally.

I Helpful if the input batch is too large to fit into a device.

• It can split one input batch into multiple micro-batches.
• Run local forward and backward passes on every micro-batch.
• Only launch gradient synchronization at the boundaries of large batches.

43 / 64

Gradient Accumulation

I Reduce gradient synchronization frequencies to speed up distributed data parallel
training.

I Instead of launching AllReduce in every iteration, it can conduct n local training
iterations before synchronizing gradients globally.

I Helpful if the input batch is too large to fit into a device.
• It can split one input batch into multiple micro-batches.

• Run local forward and backward passes on every micro-batch.
• Only launch gradient synchronization at the boundaries of large batches.

43 / 64

Gradient Accumulation

I Reduce gradient synchronization frequencies to speed up distributed data parallel
training.

I Instead of launching AllReduce in every iteration, it can conduct n local training
iterations before synchronizing gradients globally.

I Helpful if the input batch is too large to fit into a device.
• It can split one input batch into multiple micro-batches.
• Run local forward and backward passes on every micro-batch.

• Only launch gradient synchronization at the boundaries of large batches.

43 / 64

Gradient Accumulation

I Reduce gradient synchronization frequencies to speed up distributed data parallel
training.

I Instead of launching AllReduce in every iteration, it can conduct n local training
iterations before synchronizing gradients globally.

I Helpful if the input batch is too large to fit into a device.
• It can split one input batch into multiple micro-batches.
• Run local forward and backward passes on every micro-batch.
• Only launch gradient synchronization at the boundaries of large batches.

43 / 64

ZeRO: Memory Optimizations Toward Training
Trillion Parameter Models

44 / 64

ZeRO (1/2)

I Data and model parallelisms exhibit fundamental limitations to fit massive models
into limited device memory, while obtaining computation, communication and devel-
opment efficiency.

I Zero Redundancy Optimizer (ZeRO) eliminates memory redundancies in data-parallel
and model-parallel training.

I It retains low communication volume and high computational granularity.

I Therefore, it allows to scale the model size proportional to the number of devices.

45 / 64

ZeRO (1/2)

I Data and model parallelisms exhibit fundamental limitations to fit massive models
into limited device memory, while obtaining computation, communication and devel-
opment efficiency.

I Zero Redundancy Optimizer (ZeRO) eliminates memory redundancies in data-parallel
and model-parallel training.

I It retains low communication volume and high computational granularity.

I Therefore, it allows to scale the model size proportional to the number of devices.

45 / 64

ZeRO (1/2)

I Data and model parallelisms exhibit fundamental limitations to fit massive models
into limited device memory, while obtaining computation, communication and devel-
opment efficiency.

I Zero Redundancy Optimizer (ZeRO) eliminates memory redundancies in data-parallel
and model-parallel training.

I It retains low communication volume and high computational granularity.

I Therefore, it allows to scale the model size proportional to the number of devices.

45 / 64

ZeRO (1/2)

I Data and model parallelisms exhibit fundamental limitations to fit massive models
into limited device memory, while obtaining computation, communication and devel-
opment efficiency.

I Zero Redundancy Optimizer (ZeRO) eliminates memory redundancies in data-parallel
and model-parallel training.

I It retains low communication volume and high computational granularity.

I Therefore, it allows to scale the model size proportional to the number of devices.

45 / 64

Where Did All the Memory Go?

I Model states
• Optimizer states
• Gradients
• Parameters

I Residual memory consumption
• Activations
• Temporary buffers
• Memory fragmentation

46 / 64

ZeRO (2/2)

I ZeRO has two sets of optimizations:

I ZeRO-DP (ZeRO Data Parallelism): aimes at reducing the memory footprint of the
model states.

I ZeRO-R (ZeRO Residual): targetes towards reducing the residual memory consump-
tion.

47 / 64

ZeRO (2/2)

I ZeRO has two sets of optimizations:

I ZeRO-DP (ZeRO Data Parallelism): aimes at reducing the memory footprint of the
model states.

I ZeRO-R (ZeRO Residual): targetes towards reducing the residual memory consump-
tion.

47 / 64

ZeRO (2/2)

I ZeRO has two sets of optimizations:

I ZeRO-DP (ZeRO Data Parallelism): aimes at reducing the memory footprint of the
model states.

I ZeRO-R (ZeRO Residual): targetes towards reducing the residual memory consump-
tion.

47 / 64

ZeRO-DP

48 / 64

Optimizing Model State Memory

I Model states often consume the largest amount of memory during training.

• Data-Parallel and Model-Parallel approaches do not offer satisfying solution.

I Data-Parallel (DP) has good compute/communication efficiency, but poor memory
efficiency.

I Model-Parallel (MP) can have poor compute/communication efficiency, but good
memory efficiency.

I Both approaches maintain all the model states required over the entire training pro-
cess statically, even though not all model states are required all the time during the
training.

49 / 64

Optimizing Model State Memory

I Model states often consume the largest amount of memory during training.
• Data-Parallel and Model-Parallel approaches do not offer satisfying solution.

I Data-Parallel (DP) has good compute/communication efficiency, but poor memory
efficiency.

I Model-Parallel (MP) can have poor compute/communication efficiency, but good
memory efficiency.

I Both approaches maintain all the model states required over the entire training pro-
cess statically, even though not all model states are required all the time during the
training.

49 / 64

Optimizing Model State Memory

I Model states often consume the largest amount of memory during training.
• Data-Parallel and Model-Parallel approaches do not offer satisfying solution.

I Data-Parallel (DP) has good compute/communication efficiency, but poor memory
efficiency.

I Model-Parallel (MP) can have poor compute/communication efficiency, but good
memory efficiency.

I Both approaches maintain all the model states required over the entire training pro-
cess statically, even though not all model states are required all the time during the
training.

49 / 64

Optimizing Model State Memory

I Model states often consume the largest amount of memory during training.
• Data-Parallel and Model-Parallel approaches do not offer satisfying solution.

I Data-Parallel (DP) has good compute/communication efficiency, but poor memory
efficiency.

I Model-Parallel (MP) can have poor compute/communication efficiency, but good
memory efficiency.

I Both approaches maintain all the model states required over the entire training pro-
cess statically, even though not all model states are required all the time during the
training.

49 / 64

Optimizing Model State Memory

I Model states often consume the largest amount of memory during training.
• Data-Parallel and Model-Parallel approaches do not offer satisfying solution.

I Data-Parallel (DP) has good compute/communication efficiency, but poor memory
efficiency.

I Model-Parallel (MP) can have poor compute/communication efficiency, but good
memory efficiency.

I Both approaches maintain all the model states required over the entire training pro-
cess statically, even though not all model states are required all the time during the
training.

49 / 64

Optimization Phases of ZeRO-DP

I Optimizer state partitioning Pos

I Gradient partitioning Pg

I Parameter partitioning Pp

50 / 64

Optimizer State Partitioning Pos

I Nd: number of data parallel processes

I Group the optimizer states into Nd equal partitions (1
Nd

) on each data parallel process.

I Each data parallel process only updates the its corresponding optimizer states.

I Performs an all-gather across the data parallel process at the end of each training
step to get the fully updated parameters across all data parallel process.

51 / 64

Optimizer State Partitioning Pos

I Nd: number of data parallel processes

I Group the optimizer states into Nd equal partitions (1
Nd

) on each data parallel process.

I Each data parallel process only updates the its corresponding optimizer states.

I Performs an all-gather across the data parallel process at the end of each training
step to get the fully updated parameters across all data parallel process.

51 / 64

Optimizer State Partitioning Pos

I Nd: number of data parallel processes

I Group the optimizer states into Nd equal partitions (1
Nd

) on each data parallel process.

I Each data parallel process only updates the its corresponding optimizer states.

I Performs an all-gather across the data parallel process at the end of each training
step to get the fully updated parameters across all data parallel process.

51 / 64

Optimizer State Partitioning Pos

I Nd: number of data parallel processes

I Group the optimizer states into Nd equal partitions (1
Nd

) on each data parallel process.

I Each data parallel process only updates the its corresponding optimizer states.

I Performs an all-gather across the data parallel process at the end of each training
step to get the fully updated parameters across all data parallel process.

51 / 64

Gradient Partitioning Pg

I Each data parallel process only needs the reduced gradients for the corresponding
parameters.

I As each gradient of each layer becomes available during the backward propagation,
only the data parallel process responsible for updating the corresponding parameters
will reduce them.

I This is a Reduce-Scatter operation, where gradients corresponding to different pa-
rameters are reduced to different process.

I After the reduction, the gradients are no longer needed and their memory can be
released.

52 / 64

Gradient Partitioning Pg

I Each data parallel process only needs the reduced gradients for the corresponding
parameters.

I As each gradient of each layer becomes available during the backward propagation,
only the data parallel process responsible for updating the corresponding parameters
will reduce them.

I This is a Reduce-Scatter operation, where gradients corresponding to different pa-
rameters are reduced to different process.

I After the reduction, the gradients are no longer needed and their memory can be
released.

52 / 64

Gradient Partitioning Pg

I Each data parallel process only needs the reduced gradients for the corresponding
parameters.

I As each gradient of each layer becomes available during the backward propagation,
only the data parallel process responsible for updating the corresponding parameters
will reduce them.

I This is a Reduce-Scatter operation, where gradients corresponding to different pa-
rameters are reduced to different process.

I After the reduction, the gradients are no longer needed and their memory can be
released.

52 / 64

Gradient Partitioning Pg

I Each data parallel process only needs the reduced gradients for the corresponding
parameters.

I As each gradient of each layer becomes available during the backward propagation,
only the data parallel process responsible for updating the corresponding parameters
will reduce them.

I This is a Reduce-Scatter operation, where gradients corresponding to different pa-
rameters are reduced to different process.

I After the reduction, the gradients are no longer needed and their memory can be
released.

52 / 64

Parameter Partitioning Pp

I Each process only stores the parameters corresponding to its partition.

I When the parameters outside of its partition are required for forward and backward
propagation, they are received from the appropriate data parallel process through
broadcast.

I This approach increases the total communication volume of a baseline DP system to
1.5x, while enabling memory reduction proportional to Nd.

53 / 64

Parameter Partitioning Pp

I Each process only stores the parameters corresponding to its partition.

I When the parameters outside of its partition are required for forward and backward
propagation, they are received from the appropriate data parallel process through
broadcast.

I This approach increases the total communication volume of a baseline DP system to
1.5x, while enabling memory reduction proportional to Nd.

53 / 64

Parameter Partitioning Pp

I Each process only stores the parameters corresponding to its partition.

I When the parameters outside of its partition are required for forward and backward
propagation, they are received from the appropriate data parallel process through
broadcast.

I This approach increases the total communication volume of a baseline DP system to
1.5x, while enabling memory reduction proportional to Nd.

53 / 64

ZeRO-R

54 / 64

Optimizing Residual State Memory

I ZeRO-DP boosts memory efficiency for model states.

I The rest of the memory consumed by activations, temporary buffers, and unusable
memory fragments.

I ZeRO-R optimizes the residual memory consumed by the following three factors:

1. Optimizes activation memory (stored from forward pass in order to perform backward
pass) by activation partitioning. It also offloads activations to CPU when appropriate.

2. Defines appropriate size for temporary buffers to strike for a balance of memory and
computation efficiency.

3. Proactively manages memory based on the different lifetime of tensors, preventing mem-
ory fragmentation.

55 / 64

Optimizing Residual State Memory

I ZeRO-DP boosts memory efficiency for model states.

I The rest of the memory consumed by activations, temporary buffers, and unusable
memory fragments.

I ZeRO-R optimizes the residual memory consumed by the following three factors:

1. Optimizes activation memory (stored from forward pass in order to perform backward
pass) by activation partitioning. It also offloads activations to CPU when appropriate.

2. Defines appropriate size for temporary buffers to strike for a balance of memory and
computation efficiency.

3. Proactively manages memory based on the different lifetime of tensors, preventing mem-
ory fragmentation.

55 / 64

Optimizing Residual State Memory

I ZeRO-DP boosts memory efficiency for model states.

I The rest of the memory consumed by activations, temporary buffers, and unusable
memory fragments.

I ZeRO-R optimizes the residual memory consumed by the following three factors:

1. Optimizes activation memory (stored from forward pass in order to perform backward
pass) by activation partitioning. It also offloads activations to CPU when appropriate.

2. Defines appropriate size for temporary buffers to strike for a balance of memory and
computation efficiency.

3. Proactively manages memory based on the different lifetime of tensors, preventing mem-
ory fragmentation.

55 / 64

Optimizing Residual State Memory

I ZeRO-DP boosts memory efficiency for model states.

I The rest of the memory consumed by activations, temporary buffers, and unusable
memory fragments.

I ZeRO-R optimizes the residual memory consumed by the following three factors:

1. Optimizes activation memory (stored from forward pass in order to perform backward
pass) by activation partitioning. It also offloads activations to CPU when appropriate.

2. Defines appropriate size for temporary buffers to strike for a balance of memory and
computation efficiency.

3. Proactively manages memory based on the different lifetime of tensors, preventing mem-
ory fragmentation.

55 / 64

Optimizing Residual State Memory

I ZeRO-DP boosts memory efficiency for model states.

I The rest of the memory consumed by activations, temporary buffers, and unusable
memory fragments.

I ZeRO-R optimizes the residual memory consumed by the following three factors:

1. Optimizes activation memory (stored from forward pass in order to perform backward
pass) by activation partitioning. It also offloads activations to CPU when appropriate.

2. Defines appropriate size for temporary buffers to strike for a balance of memory and
computation efficiency.

3. Proactively manages memory based on the different lifetime of tensors, preventing mem-
ory fragmentation.

55 / 64

Optimizing Residual State Memory

I ZeRO-DP boosts memory efficiency for model states.

I The rest of the memory consumed by activations, temporary buffers, and unusable
memory fragments.

I ZeRO-R optimizes the residual memory consumed by the following three factors:

1. Optimizes activation memory (stored from forward pass in order to perform backward
pass) by activation partitioning. It also offloads activations to CPU when appropriate.

2. Defines appropriate size for temporary buffers to strike for a balance of memory and
computation efficiency.

3. Proactively manages memory based on the different lifetime of tensors, preventing mem-
ory fragmentation.

55 / 64

Optimization Phases of ZeRO-R

I Partitioned activation checkpointing Pa

I Constant size buffers CB

I Memory defragmentation MD

56 / 64

Partitioned Activation Checkpointing Pa

I ZeRO partitions the activations.

I Once the forward propagation for a layer of a model is computed, the activations are
partitioned across all the model parallel process, until it is needed again during the
backprogation.

I At this point, ZeRO uses an all-gather operation to re-materialize a replicated copy
of the activations.

I It works in conjunction with activation checkpointing, storing partitioned activation
checkpoints only instead of replicated copies.

57 / 64

Partitioned Activation Checkpointing Pa

I ZeRO partitions the activations.

I Once the forward propagation for a layer of a model is computed, the activations are
partitioned across all the model parallel process, until it is needed again during the
backprogation.

I At this point, ZeRO uses an all-gather operation to re-materialize a replicated copy
of the activations.

I It works in conjunction with activation checkpointing, storing partitioned activation
checkpoints only instead of replicated copies.

57 / 64

Partitioned Activation Checkpointing Pa

I ZeRO partitions the activations.

I Once the forward propagation for a layer of a model is computed, the activations are
partitioned across all the model parallel process, until it is needed again during the
backprogation.

I At this point, ZeRO uses an all-gather operation to re-materialize a replicated copy
of the activations.

I It works in conjunction with activation checkpointing, storing partitioned activation
checkpoints only instead of replicated copies.

57 / 64

Partitioned Activation Checkpointing Pa

I ZeRO partitions the activations.

I Once the forward propagation for a layer of a model is computed, the activations are
partitioned across all the model parallel process, until it is needed again during the
backprogation.

I At this point, ZeRO uses an all-gather operation to re-materialize a replicated copy
of the activations.

I It works in conjunction with activation checkpointing, storing partitioned activation
checkpoints only instead of replicated copies.

57 / 64

Constant Size Buffers CB

I ZeRO selects the sizes of the temporal-data buffers to balance memory and compute
efficiency.

I During training, the computational efficiency of some operations can be highly de-
pendent on the input size, with larger inputs achieving higher efficiency.

I To get better efficiency, it fuses all the parameters into a single buffer before applying
these operations.

I The memory overhead of the fused buffers is proportional to the model size, and can
become inhibiting.

I To address this issue, ZeRO-R uses a constant-size fused buffer when the model
becomes too large.

58 / 64

Constant Size Buffers CB

I ZeRO selects the sizes of the temporal-data buffers to balance memory and compute
efficiency.

I During training, the computational efficiency of some operations can be highly de-
pendent on the input size, with larger inputs achieving higher efficiency.

I To get better efficiency, it fuses all the parameters into a single buffer before applying
these operations.

I The memory overhead of the fused buffers is proportional to the model size, and can
become inhibiting.

I To address this issue, ZeRO-R uses a constant-size fused buffer when the model
becomes too large.

58 / 64

Constant Size Buffers CB

I ZeRO selects the sizes of the temporal-data buffers to balance memory and compute
efficiency.

I During training, the computational efficiency of some operations can be highly de-
pendent on the input size, with larger inputs achieving higher efficiency.

I To get better efficiency, it fuses all the parameters into a single buffer before applying
these operations.

I The memory overhead of the fused buffers is proportional to the model size, and can
become inhibiting.

I To address this issue, ZeRO-R uses a constant-size fused buffer when the model
becomes too large.

58 / 64

Constant Size Buffers CB

I ZeRO selects the sizes of the temporal-data buffers to balance memory and compute
efficiency.

I During training, the computational efficiency of some operations can be highly de-
pendent on the input size, with larger inputs achieving higher efficiency.

I To get better efficiency, it fuses all the parameters into a single buffer before applying
these operations.

I The memory overhead of the fused buffers is proportional to the model size, and can
become inhibiting.

I To address this issue, ZeRO-R uses a constant-size fused buffer when the model
becomes too large.

58 / 64

Memory Defragmentation MD (1/2)

I Memory fragmentation in model training occurs as a result of activation checkpoint-
ing and gradient computation.

I During the forward propagation with activation checkpointing, only selected activa-
tions are stored for back propagation.

• Most activations are discarded as they can be recomputed again during the back prop-
agation.

• Short lived memory (discarded activations) and long lived memory (checkpointed acti-
vation).

59 / 64

Memory Defragmentation MD (1/2)

I Memory fragmentation in model training occurs as a result of activation checkpoint-
ing and gradient computation.

I During the forward propagation with activation checkpointing, only selected activa-
tions are stored for back propagation.

• Most activations are discarded as they can be recomputed again during the back prop-
agation.

• Short lived memory (discarded activations) and long lived memory (checkpointed acti-
vation).

59 / 64

Memory Defragmentation MD (1/2)

I Memory fragmentation in model training occurs as a result of activation checkpoint-
ing and gradient computation.

I During the forward propagation with activation checkpointing, only selected activa-
tions are stored for back propagation.

• Most activations are discarded as they can be recomputed again during the back prop-
agation.

• Short lived memory (discarded activations) and long lived memory (checkpointed acti-
vation).

59 / 64

Memory Defragmentation MD (1/2)

I Memory fragmentation in model training occurs as a result of activation checkpoint-
ing and gradient computation.

I During the forward propagation with activation checkpointing, only selected activa-
tions are stored for back propagation.

• Most activations are discarded as they can be recomputed again during the back prop-
agation.

• Short lived memory (discarded activations) and long lived memory (checkpointed acti-
vation).

59 / 64

Memory Defragmentation MD (2/2)

I During the backward propagation, the parameter gradients are long lived, while acti-
vation gradients and any other buffers required to compute the parameter gradients
are short lived.

I This interleaving of short term and long term memory causes memory fragmentation.

I ZeRO does memory defragmentation on-the-fly by pre-allocating contiguous memory
chunks for activation checkpoints and gradients. produced.

60 / 64

Memory Defragmentation MD (2/2)

I During the backward propagation, the parameter gradients are long lived, while acti-
vation gradients and any other buffers required to compute the parameter gradients
are short lived.

I This interleaving of short term and long term memory causes memory fragmentation.

I ZeRO does memory defragmentation on-the-fly by pre-allocating contiguous memory
chunks for activation checkpoints and gradients. produced.

60 / 64

Memory Defragmentation MD (2/2)

I During the backward propagation, the parameter gradients are long lived, while acti-
vation gradients and any other buffers required to compute the parameter gradients
are short lived.

I This interleaving of short term and long term memory causes memory fragmentation.

I ZeRO does memory defragmentation on-the-fly by pre-allocating contiguous memory
chunks for activation checkpoints and gradients. produced.

60 / 64

Summary

61 / 64

Summary

I BigDL

I PyTorch Distributed

I ZeRO

62 / 64

Reference

I Hasheminezhad et al., Towards a Scalable and Distributed Infrastructure for Deep
Learning Applications, 2020

I Dai et al., BigDL: A Distributed Deep Learning Framework for Big Data, 2019

I Li et al., PyTorch Distributed: Experiences on Accelerating Data Parallel Training,
2020

I Rajbhandari et al., ZeRO: Memory Optimizations Toward Training Trillion Parameter
Models, 2020

63 / 64

Questions?

64 / 64

