
Module 5
Evi Gogoulou, Shahbaz Khader, Akhila Rao

Automated Machine Learning:
State-of-The-Art and Open

Challenges
Radwa Elshawi Mohamed Maher Sherif Sakr

Problem definition
● CASH Problem : Combined Algorithm Selection and Hyper-parameter tuning

● Goal: Select an ML algorithm that can achieve optimal performance in both
the training and validation set, given a specific time budget constraint.

Meta-Learning
● Warm starting of the optimization algorithm by leveraging previous learning

experiences.

● Learning based on task properties:
○ Use constructed meta-features to compute the similarity between two datasets

○ Build a meta-model that learns the statistical properties of the previous dataset

● Learning from previous model evaluations:
○ Train a meta-learner on previous evaluations of the ML model (parameters θi , task ti) to

predict new parameters Θ* new for a new task t*

● Learning from already pretrained models:
○ Transfer Learning: utilize pretrained models, trained on a task ti , for training on a new task tj

given certain similarity between ti and tj

Neural Architecture Search for Deep Learning
● Technique for automatic design of deep Artificial Neural Networks

● Random Search:Randomly sample neural architectures from a bounded

search space

● Reinforcement Learning: An agent explores the finite search space of

architectures with the goal of maximizing the performance on the given task

● Gradient-based optimization: Explore the continuous search space with the

help of gradient descent

● Evolutionary Methods: They are based on genetic algorithms or hierarchical

evolution

● Bayesian optimization: They rely on Gaussian processes or tree-based

models

Hyperparameter Optimization (1)
● Black-Box optimization: The analytical form of the objective function is not

known, only the results of evaluating this function at different points can be
used.

● Grid Search \ Random Search:
○ Easily parallelizable methods
○ Given a computational budget, random search is better

● Bayesian Optimization: Suitable for computationally expensive objective
functions

● Simulated Annealing: Update each hyperparameter value based on the
neighbourhood states

● Genetic Algorithms: Apply genetic operations to a population of
hyperparameter configurations

Hyperparameter Optimization (2)

● Multi-fidelity optimization: Use a small part of the dataset to evaluate the

objective function (low-fidelity evaluation)
○ Use many low-fidelity evaluation instead of one high-fidelity evaluation

○ Trade-off between computational cost and optimization performance

● Modeling learning curves: Uses the progression of the learning curve as the

stopping criterion for the hyperparameter optimization

● Successive halving: multi-fidelity method which keeps only the best half of the

tested configurations at each step

● HyperBand: multi-fidelity method that applies Successive halving on randomly

sampled configurations

Tools and Frameworks
● Centralized Frameworks:

○ designed to run on a single machine

○ suitable for handling small to medium datasets

● Distributed Frameworks:
○ Utilize multi-node systems for solving the CASH probrem for bigger datasets

● Cloud-based Frameworks:
○ Utilize the computational power of cloud-based environments

○ Typically require minimal user experience

○ Compatible with other services in the same cloud ecosystem

● Neural Network Automation Frameworks:
○ find neural network architectures that are competitive with architectures designed by human

expert

Other automation aspects

Summary
● Good overview of all available methods and tools for automatizing the ML

pipeline
● It would be probably insightful to analyse all the presented methods from the

perspective of the budget constraint
● Expand the survey to include AutoML methods for massive neural

architectures

Hyperparameter Optimization

● Machine learning algorithms can be very sensitive
to hyperparameter settings. So choosing the right
one is crucial.

● Hyperparameters
○ Learning rate
○ Regularization
○ Architecture

● Budget
○

BOHB: Robust and Efficient Hyperparameter
optimization at Scale

Stefan Falkner, Aaron Klein, Frank Hutter

PMLR 2018

Motivation
● Bayesian based methods for HPO are typically computationally infeasible.
● Random search based methods (such as Hyperband) are faster but do not

converge to good solutions.

Contribution
● Create a best of both worlds approach called BOHB

Bayesian Optimization (BO)
● Density over input configuration space is estimated to select new candidate

configurations to evaluate.

Hyperband (HB)
● Cheap to evaluate approx. versions of objective function are defined given a

budget. Higher the budget higher the quality of the estimate.
● Budget here can be the num. of iterations, num. of data points, num. of steps

in MCMC algo., num. of trials in deep reinforcement learning etc.
● Invoke successive halving (SHA) to select and promote configurations.

Successive Halving (SHA)

● Distribute the budget over ‘n’ random initial configurations.
● Evaluate and promote the best half to the next rung with double the budget.
● Iterate till one remains.

BOHB

● BO does model based search for
suitable configurations.

● HB selects the num. of
configurations and assigns budget.

● Model is updated based on
evaluated configurations.

● Iterate.

Parallel resources

● In BOHB multiple configurations need to be evaluated independently at each
iteration.

● This can be parallelized.

Evaluation over various scenarios

Best of both worlds: BOHB

● Optimizing 6 hyperparameters of a neural network.
● Has strong anytime performance obtained from HB.
● Has strong final performance obtained from BO.

Stochastic Counting Ones

Support Vector Machines

● Setup: Surrogate imitates
optimization of SVM with RBF
kernel

● Tunable hyperparameters (2)
● Budget: num. of training data

points for HB, BOHB, full set for
the others.

● Take away: GP-BO and RS are
too slow. Fabolas, HB and
BOHB find good configuration
quickly with Fabolas having the
fastest initial speedup.

Feed-forward Neural Networks

Bayesian Neural Networks
● Setup: 2 layered fully connected

Bayesian neural network trained with
MCMC sampling.

● Tunable hyperparameters (4):
○ step length,
○ length of burn-in period,
○ num. of units in each layer,
○ decay parameter of momentum.

● Dataset: Boston housing
● Budget: 500-10000 MCMC steps

Take away: BOHB converged faster than
both HB and TPE (BO) and even found a
better configuration than the baselines.

Reinforcement Learning

● Setup: Proximal policy
optimization to learn the
cartpole swing-up task.

● Tunable hyperparameters (8)
● Budget: BOHB and HB 1-9

trials, others fixed 9 trials.
● Take away: BOHB starts same

as HB but converged to better
configurations. TPE did not
have enough budget to find the
same.

Convolutional Neural Networks
● Tunable hyperparameters: learning rate, momentum, weight decay, batch

size.
● Budget: 22,66,200,600 epochs.
● 19 parallel workers
● Take away: BOHB is practically useful for resource constrained optimization.

Limitations
● Small budgets gives us cheap approximations of objective function.
● This assumes that relative ranking of configurations mostly hold even for

small budgets.
● If this is not true and the approximation is too noisy then it will result in BHOB

being slower than BO and worse than than even random search.
● To overcome this BHOB samples a fixed fraction (1/3) of configurations

randomly. This avoids missing good configurations hiding among bad ones.

Summary
● BOHB combines good initial performance of HB and good convergence

properties of BO.
● BO component helps guide the search and results in faster convergence
● HB component helps get a quick start through SHA and results in good initial

speedup.
● Solution is robust , flexible, scalable gives strong anytime and final

performance.
● Code has been made available.

A System for Massively Parallel Hyperparameter
Tuning

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina
Gonina, Jonathan Ben-Tzur, Moritz Hardt,

Benjamin Recht, Ameet Talwalkar

MLSys 2020

Motivation
● Usually, with increasingly large models, the available additional budget for

HPO is low.
● Massive parallelization is the way to go.
● Adaptive search based methods are iterative and hard to parallelize.
● Grid and random search are trivial to parallelize but don’t scale well with

increased num. of hyperparameters.
● Synchronous hyperparameter tuning methods struggle from stragglers.
● There is a need for production grade hyperparameter tuning systems.

Contribution

● Asynchronous SHA called ASHA.
● A method to parallelize ASHA.
● Deploy ASHA in a production grade system.

Async SHA: ASHA
● When a worker finishes a job it

requests a new one.
● We look at the rungs from top

to bottom to see if there are
configurations in the top 1/η of
each rung.

● These are promoted to the
next rung.

● If none, we assign the worker
to add a configuration to the
lowest rung to grow the width
of the level so that more
configurations can be
promoted.

Single Machine Experiments

● PBT is the state-of-the-art evolutionary
method that iteratively improves fitness of
configurations.

● Benchmark 1:
○ SHA and ASHA do better than PBT.

● Benchmark 2:
○ SHA, ASHA and PBT do comparably.

● Both cases, ASHA does not degrade
performance even though it is async.

Distributed experiments
● 25 workers.
● Benchmark 1:

○ ASHA better than PBT, comparable to BOHB.
○ ASHA took 40 min to evaluate 1000 configurations

and find a good one using 25 workers.
○ This is about the same time as needed to train for a

single configuration on 1 worker.
○ In a serial setting this would take 400 min.
○ Increase in # workers by 25 led to only 10 X speedup

due to relative simplicity of the task.

● Benchmark 2:
○ ASHA comparable to PBT, better than BOHB.
○ ASHA took 25 min while using 25 workers.
○ It took 700 min while using 1 worker.
○ Speedup in linear since this is a harder task that can

leverage the additional workers.

Distributed Large-scale experiments

● 500 workers.
● Vizier is Google’s internal

hyperparameter optimizer.

Production grade ASHA
● Simplified user interface with same input as random search.
● Stopping criteria is a fixed number of configurations.
● Use Paleo predicted trade-off curves to choose number of GPUs per

configuration for a given efficiency.
● A fair share scheduler that adaptively allocated resources over the lifetime of

a job.
● Reproducible checkpoints and state saving for pause and restart feature.

Summary
● Making SHA async (ASHA) does not degrade its performance and allows for

massive parallelization of HPO.
● Parallelized ASHA does comparable or better than PBT, SHA and BOHB.
● A production grade HPO system was developed with many contributions in

the form of informed design decisions.

Network Architecture Search (NAS)

DARTS: DIFFERENTIABLE
ARCHITECTURE SEARCH
Hanxiao Liu, Karen Simonyan, Yiming Yang

ICLR 2019

Motivation

4 GPU Days, DARTS

SOTA methods are gradient-free:
● Black-box search in a discrete

non-differentiable space
● Significantly slower

2000 GPU days [Zoph et al., 2018]

3150 GPU days [Real et al., 2018]

[Elshawi et al., 2019]

Main problem: large discrete search
space

Main contribution

A method for gradient-based search for network architecture:

● Main idea: relax the discrete set of candidate architecture to be a
continuous space and apply gradient descent

● Orders of magnitude gain in computation time due to the better
efficiency of gradient-based optimization

● Generic enough for CNN and RNN

NASNet Search Space and the Cell [Zoph et al., 2018]

Outer Structure Cell Stack Cell

Convolution, pooling,
identity, none

+ Addition, concatenation

Steps:
1. Constrain all cells to have the same

architecture
2. Design a small outer structure and

search for a cell architecture on a smaller
dataset (CIFAR-10)

3. Preserve the cell architecture and scale
up to a larger outer structure

4. Train on a larger dataset (ImageNet) that
we really want

Fix outer structure ⇒ search operations in a cell ⇒ scale up outer structure ⇒ train CNN

DARTS: Continuous Search Space
N=4

A cell is a DAG consisting of sequence of N nodes:
● Each node is an intermediate result (tensor)
● Each directed edge is an operation (e.g.

convolution)
● Two input nodes and a single output node

For each intermediate node :

Output of the cell is obtained by reduction operation
(addition / concatenation) to all intermediate nodes

Continuous relaxation and optimization:

 is the set of operations and dim =

 CNN
 :
 3X3, 5X5 sep & dilated sep conv
 3X3 max & avg pooling
 Zero
N=7
Cell stack

 RNN
 :
 Linear transformations
 tanh, relu, sigmoid
 Identity, Zero
N=12
Single cell

Architecture search :
Learn (set of continuous mixing weights) and

Bilevel Optimization

Joint learning of architecture and network weights .

Optimize for

Approximation:

Final architecture selection:

But, a node could be connected to too many predecessors!

DARTS employs pruning: retain only k strongest connections

Experiment design
CIFAR-10 / PTB

DARTS

ImageNet /
WikiText-2

Bilevel opt

Discard

Small structure

Large structure

Best cell
architecture

Final network
training

Small dataset

Large dataset
(training set)

Large dataset
(test set)

ImageNet/
WikiText-2

Final evaluation

Learned Cells

Reduction cell (CIFAR-10)

Normal cell (CIFAR-10)

Recurrent cell (PTB)

Note:
1. Exactly 2 incoming connections for

CNN cells
2. Exactly 1 incoming node for RNN

cells
3. The above are enforced through a

pruning strategy

Comparison

ENAS missing!

Summary

Advantages of DARTS

1. Fast and accurate
2. No controllers
3. General enough for CNN and RNN

Discussion points:
1. Why was ENAS not compared?
2. ENAS performance comes close

despite being RL
3. Why Normal and Reduction cells?

Main results

1. Proves gradient-based approach is
possible and appropriate

2. Competitive results on accuracy
3. Outperforms all existing gradient-free

methods in speed ?
4. Demonstrated transferability from

small to large datasets:
a. CNN: CIFAR-10 to ImageNet
b. RNN: PTB to WikiText-2

ASAP: Architecture Search, Anneal and
Prune

Asaf Noy, Niv Nayman, Tal Ridnik, Nadav Zamir, Sivan Doveh, Itamar
Friedman, Raja Giryes, Lihi Zelnik-Manor

AISTATS 2020

Problem Statement and Claims

● Adopts the same approach of DARTS
(gradient-based)

● Argues that DARTS is not fast enough, the
post-training pruning strategy is inefficient
(relaxation bias [Xie et al., 2019])

● Gradual during-training pruning results in more
efficient search

● In addition to continuity and differentiability of
search space, ASAP advocates annealability for
more efficient optimization.

● Claims to bring 1-4 GPU days of DART down to
hours.

Method

dim =

 forms a uniform (distribution) for and sparse for

Annealing schedule:

Threshold policy:

Stopping condition: when only a single operation is left in for a

Key to success is the balance between and

A generalization of DARTS to annealable search space: DARTS +
anneal and prune strategy

Experiments

Follows the same experiment design of DARTS:

Fix outer structure ⇒ search operations in a cell ⇒ scale up outer structure ⇒ train CNN

Architecture search in a small structure on CIFAR-10 took only 4.8 hours
on single GPU.

Reduction cell

Normal cell

Learned cells on CIFAR-10Results on CIFAR-10
(no transfer)

Experiments
Transferability tests:

Experiments

Effect of relaxation-bias:

Summary

● A generalization of DARTS into annealable
search space

● ASAP anneals and prunes the connection
weights within the cell in a continuous manner

● Based on the insight that pruning during training
reduces complexity and speeds up search.

● Theoretical results are available that enable good
tradeoff between annealing schedule and
threshold policy

● Achieves better training speed than DARTS while
maintaining good accuracy

Discussion points:

1. The pruning strategy does not account for
too many parents for a node in the cell.
DARTS fixed this manually (k=2).

2. In spite of not fixing the above, all nodes in
the learned cells have exactly two parents.
This is a mystery!

References

[Elshawi et al., 2019] Elshawi, Radwa, Mohamed Maher, and Sherif Sakr. "Automated machine learning: State-of-the-art and open
challenges." arXiv preprint arXiv:1906.02287 (2019).
[Zoph et al., 2018] Zoph, Barret, et al. "Learning transferable architectures for scalable image recognition." Proceedings of the IEEE
conference on computer vision and pattern recognition. 2018.
[Real et al., 2018] Real, Esteban, et al. "Regularized evolution for image classifier architecture search." Proceedings of the aaai
conference on artificial intelligence. Vol. 33. 2019.
[Xie et al., 2019] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: Stochastic neural architecture search. In International
Conference on Learning Representations (ICLR), 2019.

