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Problem definition
● CASH Problem : Combined Algorithm Selection and Hyper-parameter tuning 

● Goal: Select an ML algorithm that can achieve optimal performance in both 
the training and validation set, given a specific time budget constraint.



Meta-Learning
● Warm starting of the optimization algorithm by leveraging previous learning 

experiences.

● Learning based on task properties:
○ Use constructed meta-features to compute the similarity between two datasets

○ Build a meta-model that learns the statistical properties of the previous dataset

● Learning from previous model evaluations:
○ Train a meta-learner  on previous evaluations of the ML model (parameters θi , task ti ) to 

predict new parameters  Θ* new for a new task t*

● Learning from already pretrained models:
○ Transfer Learning: utilize pretrained models, trained on a task ti , for training on a new task tj 

given certain similarity between  ti and tj 



Neural Architecture Search for Deep Learning
● Technique for automatic design of deep Artificial Neural Networks

● Random Search:Randomly sample neural architectures from a bounded 

search space

● Reinforcement Learning: An agent explores the finite search space of 

architectures with the goal of maximizing the performance on the given task

● Gradient-based optimization: Explore the continuous search space with the 

help of gradient descent

● Evolutionary Methods: They are based on genetic algorithms or hierarchical 

evolution

● Bayesian optimization: They rely on Gaussian processes or tree-based 

models



Hyperparameter Optimization (1)
● Black-Box optimization: The analytical form of the objective function is not 

known, only the results of evaluating this function at different points can be 
used.

● Grid Search \ Random Search: 
○ Easily parallelizable methods
○ Given a computational budget, random search is better

● Bayesian Optimization: Suitable for computationally expensive objective 
functions

● Simulated Annealing: Update each hyperparameter value based on the 
neighbourhood states

● Genetic Algorithms: Apply genetic operations to a population of 
hyperparameter configurations



Hyperparameter Optimization (2)

● Multi-fidelity optimization: Use a small part of the dataset to evaluate the 

objective function (low-fidelity evaluation)
○ Use many low-fidelity evaluation instead of one high-fidelity evaluation

○ Trade-off between computational cost and optimization performance

● Modeling learning curves: Uses the progression of the learning curve as the 

stopping criterion for the hyperparameter optimization

● Successive halving: multi-fidelity method which keeps only the best half of the 

tested configurations at each step

● HyperBand: multi-fidelity method that applies Successive halving on randomly 

sampled configurations 



Tools and Frameworks
● Centralized Frameworks: 

○ designed to run on a single machine

○ suitable for handling small to medium datasets

● Distributed Frameworks:
○ Utilize multi-node systems for solving the CASH probrem for bigger datasets

● Cloud-based Frameworks:
○ Utilize the computational power of cloud-based environments

○ Typically require minimal user experience 

○ Compatible with other services in the same cloud ecosystem

● Neural Network Automation Frameworks: 
○ find neural network architectures that are competitive with architectures designed by human 

expert



Other automation aspects



Summary
● Good overview of all available methods and tools for automatizing the ML 

pipeline
● It would be probably insightful to analyse all the presented methods from the 

perspective of the budget constraint
● Expand the survey to include AutoML methods for massive neural 

architectures 



Hyperparameter Optimization



● Machine learning algorithms can be very sensitive 
to hyperparameter settings. So choosing the right 
one is crucial.

● Hyperparameters
○ Learning rate
○ Regularization
○ Architecture

● Budget
○



BOHB: Robust and Efficient Hyperparameter 
optimization at Scale

Stefan Falkner, Aaron Klein, Frank Hutter

PMLR 2018



Motivation
● Bayesian based methods for HPO are typically computationally infeasible. 
● Random search based methods (such as Hyperband) are faster but do not 

converge to good solutions.   

Contribution
● Create a best of both worlds approach called BOHB  



Bayesian Optimization (BO)
● Density over input configuration space is estimated to select new candidate 

configurations to evaluate. 

Hyperband (HB)
● Cheap to evaluate approx. versions of objective function are defined given a 

budget. Higher the budget higher the quality of the estimate. 
● Budget here can be the num. of iterations, num. of data points, num. of steps 

in MCMC algo., num. of trials in deep reinforcement learning etc.  
● Invoke successive halving (SHA) to select and promote configurations. 



Successive Halving (SHA)

● Distribute the budget over ‘n’ random initial configurations.
● Evaluate and promote the best half to the next rung with double the budget.
● Iterate till one remains.  



BOHB

● BO does model based search for 
suitable configurations.

● HB selects the num. of 
configurations and assigns budget. 

● Model is updated based on 
evaluated configurations. 

● Iterate.  



Parallel resources 

● In BOHB multiple configurations need to be evaluated independently at each 
iteration. 

● This can be parallelized. 



Evaluation over various scenarios



Best of both worlds: BOHB

● Optimizing 6 hyperparameters of a neural network. 
● Has strong anytime performance obtained from HB.
● Has strong final performance obtained from BO.



Stochastic Counting Ones



Support Vector Machines

● Setup: Surrogate imitates 
optimization of SVM with RBF 
kernel

● Tunable hyperparameters (2)
● Budget: num. of training data 

points for HB, BOHB, full set for 
the others.

● Take away: GP-BO and RS are 
too slow. Fabolas, HB and 
BOHB find good configuration 
quickly with Fabolas having the 
fastest initial speedup.   



Feed-forward Neural Networks



Bayesian Neural Networks
● Setup: 2 layered fully connected 

Bayesian neural network trained with 
MCMC sampling.

● Tunable hyperparameters (4): 
○ step length, 
○ length of burn-in period, 
○ num. of units in each layer, 
○ decay parameter of momentum.

● Dataset: Boston housing 
● Budget: 500-10000 MCMC steps

Take away: BOHB converged faster than 
both HB and TPE (BO) and even found a 
better configuration than the baselines. 



Reinforcement Learning

● Setup: Proximal policy 
optimization to learn the 
cartpole swing-up task. 

● Tunable hyperparameters (8) 
● Budget: BOHB and HB 1-9 

trials, others fixed 9 trials.
● Take away: BOHB starts same 

as HB but converged to better 
configurations. TPE did not 
have enough budget to find the 
same. 



Convolutional Neural Networks
● Tunable hyperparameters: learning rate, momentum, weight decay, batch 

size. 
● Budget: 22,66,200,600 epochs. 
●  19 parallel workers
● Take away: BOHB is practically useful for resource constrained optimization.



Limitations
● Small budgets gives us cheap approximations of objective function. 
● This assumes that relative ranking of configurations mostly hold even for 

small budgets.
● If this is not true and the approximation is too noisy then it will result in BHOB 

being slower than BO and worse than than even random search.  
● To overcome this BHOB samples a fixed fraction (1/3) of configurations 

randomly. This avoids missing good configurations hiding among bad ones.  



Summary
● BOHB combines good initial performance of HB and good convergence 

properties of BO.
● BO component helps guide the search and results in faster convergence
● HB component helps get a quick start through SHA and results in good initial 

speedup.    
● Solution is robust , flexible, scalable gives strong anytime and final 

performance. 
● Code has been made available.



A System for Massively Parallel Hyperparameter 
Tuning

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina 
Gonina, Jonathan Ben-Tzur, Moritz Hardt,

Benjamin Recht, Ameet Talwalkar

MLSys 2020



Motivation
● Usually, with increasingly large models, the available additional budget for 

HPO is low. 
● Massive parallelization is the way to go. 
● Adaptive search based methods are iterative and hard to parallelize. 
● Grid and random search are trivial to parallelize but don’t scale well with 

increased num. of hyperparameters.   
● Synchronous hyperparameter tuning methods struggle from stragglers. 
● There is a need for production grade hyperparameter tuning systems.  



Contribution

● Asynchronous SHA called ASHA.   
● A method to parallelize ASHA.
● Deploy ASHA in a production grade system.   



Async SHA: ASHA
● When a worker finishes a job it 

requests a new one.
● We look at the rungs from top 

to bottom to see if there are 
configurations in the top 1/η of 
each rung.

● These are promoted to the 
next rung.

● If none, we assign the worker 
to add a configuration to the 
lowest rung to grow the width 
of the level so that more 
configurations can be 
promoted.



Single Machine Experiments

● PBT is the state-of-the-art evolutionary 
method that iteratively improves fitness of 
configurations.

● Benchmark 1:
○ SHA and ASHA do better than PBT.

● Benchmark 2:
○ SHA, ASHA and PBT do comparably.

● Both cases, ASHA does not degrade 
performance even though it is async. 



Distributed experiments
● 25 workers.
● Benchmark 1: 

○ ASHA better than PBT, comparable to BOHB. 
○ ASHA took 40 min to evaluate 1000 configurations 

and find a good one using 25 workers.
○ This is about the same time as needed to train for a 

single configuration on 1 worker.
○ In a serial setting this would take 400 min. 
○ Increase in # workers by 25 led to only 10 X speedup 

due to relative simplicity of the task. 

● Benchmark 2:
○ ASHA comparable to PBT, better than BOHB. 
○ ASHA took 25 min while using 25 workers. 
○ It took 700 min while using 1 worker.
○ Speedup in linear since this is a harder task that can 

leverage the additional workers.   



Distributed Large-scale experiments 

● 500 workers.
● Vizier is Google’s internal 

hyperparameter optimizer. 



Production grade ASHA
● Simplified user interface with same input as random search. 
● Stopping criteria is a fixed number of configurations.  
● Use Paleo predicted trade-off curves to choose number of GPUs per 

configuration for a given efficiency.  
● A fair share scheduler that adaptively allocated resources over the lifetime of 

a job. 
● Reproducible checkpoints and state saving for pause and restart feature.



Summary
● Making SHA async (ASHA) does not degrade its performance and allows for 

massive parallelization of HPO.
● Parallelized ASHA does comparable or better than PBT, SHA and BOHB. 
● A production grade HPO system was developed with many contributions in 

the form of informed design decisions.   



Network Architecture Search (NAS)



DARTS: DIFFERENTIABLE 
ARCHITECTURE SEARCH
Hanxiao Liu, Karen Simonyan, Yiming Yang

ICLR 2019



Motivation

4 GPU Days, DARTS 

SOTA methods are gradient-free:
● Black-box search in a discrete 

non-differentiable space
● Significantly slower

2000 GPU days [Zoph et al., 2018]

3150 GPU days [Real et al., 2018]

[Elshawi et al., 2019]

Main problem: large discrete search 
space



Main contribution

A method for gradient-based search for network architecture:

● Main idea: relax the discrete set of candidate architecture to be a 
continuous space and apply gradient descent

● Orders of magnitude gain in computation time due to the better 
efficiency of gradient-based optimization

● Generic enough for CNN and RNN



NASNet Search Space and the Cell [Zoph et al., 2018]

Outer Structure Cell Stack Cell

Convolution, pooling, 
identity, none

+ Addition, concatenation

Steps:
1. Constrain all cells to have the same 

architecture
2. Design a small outer structure and 

search for a cell architecture on a smaller 
dataset (CIFAR-10)

3. Preserve the cell architecture and scale 
up to a larger outer structure

4. Train on a larger dataset (ImageNet) that 
we really want

Fix outer structure ⇒ search operations in a cell ⇒ scale up outer structure ⇒ train CNN



DARTS: Continuous Search Space
N=4

A cell is a DAG consisting of sequence of N nodes:
● Each node        is an intermediate result (tensor)
● Each directed edge        is an operation (e.g. 

convolution)
● Two input nodes and a single output node

For each intermediate node    :

Output of the cell is obtained by reduction operation 
(addition / concatenation) to all intermediate nodes

Continuous relaxation and optimization:

     is the set of operations and dim         =

             CNN
    :
  3X3, 5X5 sep & dilated sep conv
  3X3 max & avg pooling
  Zero
N=7
Cell stack

            RNN
    :
  Linear transformations
  tanh, relu, sigmoid
  Identity, Zero
N=12
Single cell

Architecture search : 
Learn                     (set of continuous mixing weights) and 



Bilevel Optimization

Joint learning of architecture     and network weights     .

Optimize for  

Approximation:

Final architecture selection:

But, a node could be connected to too many predecessors!

DARTS employs pruning: retain only k strongest connections



Experiment design
CIFAR-10 / PTB

DARTS

ImageNet / 
WikiText-2

Bilevel opt

Discard

Small structure

Large structure

Best cell 
architecture

Final network 
training

Small dataset

Large dataset
(training set)

Large dataset
(test set)

ImageNet/
WikiText-2

Final evaluation



Learned Cells

Reduction cell (CIFAR-10)

Normal cell (CIFAR-10)

Recurrent cell (PTB)

Note:
1. Exactly 2 incoming connections for 

CNN cells
2. Exactly 1 incoming node for RNN 

cells
3. The above are enforced through a 

pruning strategy



Comparison

ENAS missing!



Summary

Advantages of DARTS

1. Fast and accurate
2. No controllers
3. General enough for CNN and RNN

Discussion points:
1. Why was ENAS not compared?
2. ENAS performance comes close 

despite being RL
3. Why Normal and Reduction cells?

Main results

1. Proves gradient-based approach is 
possible and appropriate

2. Competitive results on accuracy
3. Outperforms all existing gradient-free 

methods in speed ?
4. Demonstrated transferability from 

small to large datasets:
a. CNN: CIFAR-10 to ImageNet
b. RNN: PTB to WikiText-2



ASAP: Architecture Search, Anneal and 
Prune

Asaf Noy, Niv Nayman, Tal Ridnik, Nadav Zamir, Sivan Doveh, Itamar 
Friedman, Raja Giryes, Lihi Zelnik-Manor

AISTATS 2020



Problem Statement and Claims

● Adopts the same approach of DARTS 
(gradient-based)

● Argues that DARTS is not fast enough, the 
post-training pruning strategy is inefficient 
(relaxation bias [Xie et al., 2019])

● Gradual during-training pruning results in more 
efficient search

● In addition to continuity and differentiability of 
search space, ASAP advocates annealability for 
more efficient optimization.

● Claims to bring 1-4 GPU days of DART down to 
hours.



Method

dim         =  

       forms a uniform (distribution) for              and sparse for 

Annealing schedule: 

Threshold policy: 

Stopping condition: when only a single operation is left in     for a 

Key to success is the balance between          and     

A generalization of DARTS to annealable search space: DARTS + 
anneal and prune strategy



Experiments

Follows the same experiment design of DARTS:

Fix outer structure ⇒ search operations in a cell ⇒ scale up outer structure ⇒ train CNN

Architecture search in a small structure on CIFAR-10 took only 4.8 hours 
on single GPU.

Reduction cell

Normal cell

Learned cells on CIFAR-10Results on CIFAR-10
(no transfer)



Experiments
Transferability tests:



Experiments

Effect of relaxation-bias:



Summary

● A generalization of DARTS into annealable 
search space

● ASAP anneals and prunes the connection 
weights within the cell in a continuous manner 

● Based on the insight that pruning during training 
reduces complexity and speeds up search.

● Theoretical results are available that enable good 
tradeoff between annealing schedule and 
threshold policy

● Achieves better training speed than DARTS while 
maintaining good accuracy

 

Discussion points:

1. The pruning strategy does not account for 
too many parents for a node in the cell. 
DARTS fixed this manually (k=2).

2. In spite of not fixing the above, all nodes in 
the learned cells have exactly two parents. 
This is a mystery!
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