## Module 5

Evi Gogoulou, Shahbaz Khader, Akhila Rao

### Automated Machine Learning: State-of-The-Art and Open Challenges

Radwa Elshawi Mohamed Maher Sherif Sakr

#### **Problem definition**

• CASH Problem : Combined Algorithm Selection and Hyper-parameter tuning

$$A^{(i)^*} \in \underset{A \ \epsilon \ \mathbf{A}}{\operatorname{argmin}} L(A^{(i)}, D_{train}, D_{validation})$$

• Goal: Select an ML algorithm that can achieve optimal performance in both the training and validation set, given a *specific time budget constraint*.

#### Meta-Learning

- Warm starting of the optimization algorithm by leveraging previous learning experiences.
- Learning based on task properties:
  - Use constructed meta-features to compute the similarity between two datasets
  - Build a meta-model that learns the statistical properties of the previous dataset
- Learning from previous model evaluations:
  - Train a meta-learner on previous evaluations of the ML model (parameters  $\theta_i$ , task  $t_i$ ) to predict new parameters  $\Theta^*$  new for a new task t\*
- Learning from already pretrained models:
  - Transfer Learning: utilize pretrained models, trained on a task  $t_i$ , for training on a new task  $t_j$  given certain similarity between  $t_i$  and  $t_i$

#### Neural Architecture Search for Deep Learning

- Technique for automatic design of deep Artificial Neural Networks
- <u>Random Search</u>:Randomly sample neural architectures from a bounded search space
- <u>Reinforcement Learning</u>: An agent explores the finite search space of architectures with the goal of maximizing the performance on the given task
- <u>Gradient-based optimization</u>: Explore the continuous search space with the help of gradient descent
- <u>Evolutionary Methods:</u> They are based on genetic algorithms or hierarchical evolution
- Bayesian optimization: They rely on Gaussian processes or tree-based models

#### Hyperparameter Optimization (1)

- <u>Black-Box optimization:</u> The analytical form of the objective function is not known, only the results of evaluating this function at different points can be used.
- Grid Search \ Random Search:
  - Easily parallelizable methods
  - Given a computational budget, random search is better
- Bayesian Optimization: Suitable for computationally expensive objective functions
- Simulated Annealing: Update each hyperparameter value based on the neighbourhood states
- Genetic Algorithms: Apply genetic operations to a population of hyperparameter configurations

#### Hyperparameter Optimization (2)

- <u>Multi-fidelity optimization:</u> Use a small part of the dataset to evaluate the objective function (low-fidelity evaluation)
  - Use many low-fidelity evaluation instead of one high-fidelity evaluation
  - Trade-off between computational cost and optimization performance
- Modeling learning curves: Uses the progression of the learning curve as the stopping criterion for the hyperparameter optimization
- Successive halving: multi-fidelity method which keeps only the best half of the tested configurations at each step
- HyperBand: multi-fidelity method that applies Successive halving on randomly sampled configurations

#### **Tools and Frameworks**

- Centralized Frameworks:
  - designed to run on a single machine
  - suitable for handling small to medium datasets
- Distributed Frameworks:
  - Utilize multi-node systems for solving the CASH probrem for bigger datasets
- Cloud-based Frameworks:
  - Utilize the computational power of cloud-based environments
  - Typically require minimal user experience
  - Compatible with other services in the same cloud ecosystem
- Neural Network Automation Frameworks:
  - find neural network architectures that are competitive with architectures designed by human expert

#### Other automation aspects



#### Summary

- Good overview of all available methods and tools for automatizing the ML pipeline
- It would be probably insightful to analyse all the presented methods from the perspective of the budget constraint
- Expand the survey to include AutoML methods for massive neural architectures

#### Hyperparameter Optimization

- Machine learning algorithms can be very sensitive to hyperparameter settings. So choosing the right one is crucial.
- Hyperparameters
  - $\circ$  Learning rate
  - Regularization
  - Architecture
- Budget

# BOHB: Robust and Efficient Hyperparameter optimization at Scale

Stefan Falkner, Aaron Klein, Frank Hutter

PMLR 2018

#### Motivation

- Bayesian based methods for HPO are typically computationally infeasible.
- Random search based methods (such as Hyperband) are faster but do not converge to good solutions.

#### Contribution

• Create a best of both worlds approach called BOHB

#### Bayesian Optimization (BO)

• Density over input configuration space is estimated to select new candidate configurations to evaluate.

#### Hyperband (HB)

- Cheap to evaluate approx. versions of objective function are defined given a budget. Higher the budget higher the quality of the estimate.
- Budget here can be the num. of iterations, num. of data points, num. of steps in MCMC algo., num. of trials in deep reinforcement learning etc.
- Invoke successive halving (SHA) to select and promote configurations.



- Distribute the budget over 'n' random initial configurations.
- Evaluate and promote the best half to the next rung with double the budget.
- Iterate till one remains.

#### BOHB

Algorithm 2: Pseudocode for sampling in BOHB

input :observations D, fraction of random runs  $\rho$ , percentile q, number of samples  $N_s$ , minimum number of points  $N_{min}$  to build a model, and bandwidth factor  $b_w$ output : next configuration to evaluate 1 if  $rand() < \rho$  then return random configuration 2  $b = \arg \max \{D_b : |D_b| \ge N_{min} + 2\}$ 3 if  $b = \emptyset$  then return random configuration 4 fit KDEs according to Eqs. (2) and (3) 5 draw  $N_s$  samples according to l'(x) (see text) 6 return sample with highest ratio l(x)/g(x)

- BO does model based search for suitable configurations.
- HB selects the num. of configurations and assigns budget.
- Model is updated based on evaluated configurations.
- Iterate.

#### Parallel resources



- In BOHB multiple configurations need to be evaluated independently at each iteration.
- This can be parallelized.

#### Evaluation over various scenarios

#### Best of both worlds: BOHB



- Optimizing 6 hyperparameters of a neural network.
- Has strong anytime performance obtained from HB.
- Has strong final performance obtained from BO.

#### **Stochastic Counting Ones**



#### **Support Vector Machines**



- Setup: Surrogate imitates optimization of SVM with RBF kernel
- Tunable hyperparameters (2)
- Budget: num. of training data points for HB, BOHB, full set for the others.
- Take away: GP-BO and RS are too slow. Fabolas, HB and BOHB find good configuration quickly with Fabolas having the fastest initial speedup.

#### Feed-forward Neural Networks



#### **Bayesian Neural Networks**



- Setup: 2 layered fully connected Bayesian neural network trained with MCMC sampling.
- Tunable hyperparameters (4):
  - step length,
  - $\circ$  length of burn-in period,
  - $\circ$  num. of units in each layer,
  - decay parameter of momentum.
- Dataset: Boston housing
- Budget: 500-10000 MCMC steps

Take away: BOHB converged faster than both HB and TPE (BO) and even found a better configuration than the baselines.

#### **Reinforcement Learning**



- Setup: Proximal policy optimization to learn the cartpole swing-up task.
  - Tunable hyperparameters (8)
  - Budget: BOHB and HB 1-9 trials, others fixed 9 trials.
  - Take away: BOHB starts same as HB but converged to better configurations. TPE did not have enough budget to find the same.

#### **Convolutional Neural Networks**

- Tunable hyperparameters: learning rate, momentum, weight decay, batch size.
- Budget: 22,66,200,600 epochs.
- 19 parallel workers
- Take away: BOHB is practically useful for resource constrained optimization.

#### Limitations

- Small budgets gives us cheap approximations of objective function.
- This assumes that relative ranking of configurations mostly hold even for small budgets.
- If this is not true and the approximation is too noisy then it will result in BHOB being slower than BO and worse than than even random search.
- To overcome this BHOB samples a fixed fraction (1/3) of configurations randomly. This avoids missing good configurations hiding among bad ones.

#### Summary

- BOHB combines good initial performance of HB and good convergence properties of BO.
- BO component helps guide the search and results in faster convergence
- HB component helps get a quick start through SHA and results in good initial speedup.
- Solution is robust , flexible, scalable gives strong anytime and final performance.
- Code has been made available.

#### A System for Massively Parallel Hyperparameter Tuning

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan Ben-Tzur, Moritz Hardt, Benjamin Recht, Ameet Talwalkar

MLSys 2020

#### Motivation

- Usually, with increasingly large models, the available additional budget for HPO is low.
- Massive parallelization is the way to go.
- Adaptive search based methods are iterative and hard to parallelize.
- Grid and random search are trivial to parallelize but don't scale well with increased num. of hyperparameters.
- Synchronous hyperparameter tuning methods struggle from stragglers.
- There is a need for production grade hyperparameter tuning systems.

#### Contribution

- Asynchronous SHA called ASHA.
- A method to parallelize ASHA.
- Deploy ASHA in a production grade system.

#### Async SHA: ASHA



- When a worker finishes a job it requests a new one.
- We look at the rungs from top to bottom to see if there are configurations in the top 1/η of each rung.
- These are promoted to the next rung.
- If none, we assign the worker to add a configuration to the lowest rung to grow the width of the level so that more configurations can be promoted.

#### Single Machine Experiments





- PBT is the state-of-the-art evolutionary method that iteratively improves fitness of configurations.
- Benchmark 1:
  - SHA and ASHA do better than PBT.
- Benchmark 2:
  - SHA, ASHA and PBT do comparably.
- Both cases, ASHA does not degrade performance even though it is async.

#### **Distributed experiments**





- 25 workers.
- Benchmark 1:
  - ASHA better than PBT, comparable to BOHB.
  - ASHA took 40 min to evaluate 1000 configurations and find a good one using 25 workers.
  - This is about the same time as needed to train for a single configuration on 1 worker.
  - In a serial setting this would take 400 min.
  - Increase in # workers by 25 led to only 10 X speedup due to relative simplicity of the task.
- Benchmark 2:
  - ASHA comparable to PBT, better than BOHB.
  - ASHA took 25 min while using 25 workers.
  - $\circ$   $\:$  It took 700 min while using 1 worker.
  - Speedup in linear since this is a harder task that can leverage the additional workers.

#### **Distributed Large-scale experiments**



- 500 workers.
- Vizier is Google's internal hyperparameter optimizer.

#### Production grade ASHA

- Simplified user interface with same input as random search.
- Stopping criteria is a fixed number of configurations.
- Use Paleo predicted trade-off curves to choose number of GPUs per configuration for a given efficiency.
- A fair share scheduler that adaptively allocated resources over the lifetime of a job.
- Reproducible checkpoints and state saving for pause and restart feature.
# Summary

- Making SHA async (ASHA) does not degrade its performance and allows for massive parallelization of HPO.
- Parallelized ASHA does comparable or better than PBT, SHA and BOHB.
- A production grade HPO system was developed with many contributions in the form of informed design decisions.

# Network Architecture Search (NAS)

# DARTS: DIFFERENTIABLE ARCHITECTURE SEARCH

Hanxiao Liu, Karen Simonyan, Yiming Yang

**ICLR 2019** 

# **Motivation**



# Main problem: large discrete search space

#### SOTA methods are gradient-free:

- Black-box search in a discrete
   non-differentiable space
- Significantly slower

## Main contribution

A method for gradient-based search for network architecture:

- Main idea: relax the discrete set of candidate architecture to be a continuous space and apply gradient descent
- Orders of magnitude gain in computation time due to the better efficiency of gradient-based optimization
- Generic enough for CNN and RNN

# NASNet Search Space and the Cell [Zoph et al., 2018]

#### Steps:

- 1. Constrain all cells to have the same architecture
- 2. Design a small outer structure and search for a cell architecture on a smaller dataset (CIFAR-10)
- 3. Preserve the cell architecture and scale up to a larger outer structure
- 4. Train on a larger dataset (ImageNet) that we really want



Fix outer structure  $\Rightarrow$  search operations in a cell  $\Rightarrow$  scale up outer structure  $\Rightarrow$  train CNN

# **DARTS: Continuous Search Space**

A cell is a DAG consisting of sequence of N nodes:

- Each node  $x^{(i)}$  is an intermediate result (tensor)
- Each directed edge (i, j) is an operation (e.g. convolution)
- Two input nodes and a single output node

For each intermediate node j:  $x^{(j)} = \sum_{i < j} o^{(i,j)}(x^{(i)})$ 

Output of the cell is obtained by reduction operation (addition / concatenation) to all intermediate nodes

#### Continuous relaxation and optimization:

$$\bar{o}^{(i,j)}(x) = \sum_{o \in \mathcal{O}} \frac{\exp(\alpha_o^{(i,j)})}{\sum_{o' \in \mathcal{O}} \exp(\alpha_{o'}^{(i,j)})} o(x)$$

 ${\cal O}$  is the set of operations and dim  $lpha^{(i,j)}$ =  $\left| {\cal O} 
ight|$ 

Architecture search : Learn  $\alpha = \{\alpha^{(i,j)}\}$  (set of continuous mixing weights) and  $o^{(i,j)} = \operatorname{argmax}_{o \in \mathcal{O}} \alpha_o^{(i,j)}$ 



 $\mathcal{O}$ 

## CNN

3X3, 5X5 sep & dilated sep conv 3X3 max & avg pooling Zero N=7 Cell stack

## RNN

Linear transformations tanh, relu, sigmoid Identity, Zero N=12 Single cell

# **Bilevel Optimization**

Joint learning of architecture  $\alpha$  and network weights w.

Optimize for  $\alpha^*$ 

$$\min_{\alpha} \quad \mathcal{L}_{val}(w^*(\alpha), \alpha) \\ \text{s.t.} \quad w^*(\alpha) = \operatorname{argmin}_{w} \quad \mathcal{L}_{train}(w, \alpha)$$

Approximation:

$$\nabla_{\alpha} \mathcal{L}_{val}(w^*(\alpha), \alpha)$$
  
 
$$\approx \nabla_{\alpha} \mathcal{L}_{val}(w - \xi \nabla_w \mathcal{L}_{train}(w, \alpha), \alpha)$$

Final architecture selection:

$$o^{(i,j)} = \operatorname{argmax}_{o \in \mathcal{O}} \ \alpha_o^{(i,j)}$$

But, a node could be connected to too many predecessors! DARTS employs pruning: retain only k strongest connections



# Experiment design



# Learned Cells



Normal cell (CIFAR-10)



Reduction cell (CIFAR-10)



Recurrent cell (PTB)



Note:

- 1. Exactly 2 incoming connections for CNN cells
- 2. Exactly 1 incoming node for RNN cells
- 3. The above are enforced through a pruning strategy

# Comparison

| Architecture                                       | Test Error (%) |       | Params   | $+\times$ | Search Cost | Search         |  |
|----------------------------------------------------|----------------|-------|----------|-----------|-------------|----------------|--|
| Arcintecture                                       | top-1          | top-5 | (M)      | (M)       | (GPU days)  | Method         |  |
| Inception-v1 (Szegedy et al., 2015)                | 30.2           | 10.1  | 6.6      | 1448      | -           | manual         |  |
| MobileNet (Howard et al., 2017)                    | 29.4           | 10.5  | 4.2      | 569       | _           | manual         |  |
| ShuffleNet $2 \times (g = 3)$ (Zhang et al., 2017) | 26.3           | -     | $\sim 5$ | 524       | -           | manual         |  |
| NASNet-A (Zoph et al., 2018)                       | 26.0           | 8.4   | 5.3      | 564       | 2000        | RL             |  |
| NASNet-B (Zoph et al., 2018)                       | 27.2           | 8.7   | 5.3      | 488       | 2000        | RL             |  |
| NASNet-C (Zoph et al., 2018)                       | 27.5           | 9.0   | 4.9      | 558       | 2000        | RL             |  |
| AmoebaNet-A (Real et al., 2018)                    | 25.5           | 8.0   | 5.1      | 555       | 3150        | evolution      |  |
| AmoebaNet-B (Real et al., 2018)                    | 26.0           | 8.5   | 5.3      | 555       | 3150        | evolution      |  |
| AmoebaNet-C (Real et al., 2018)                    | 24.3           | 7.6   | 6.4      | 570       | 3150        | evolution      |  |
| PNAS (Liu et al., 2018a)                           | 25.8           | 8.1   | 5.1      | 588       | $\sim 225$  | SMBO           |  |
| DARTS (searched on CIFAR-10)                       | 26.7           | 8.7   | 4.7      | 574       | 4           | gradient-based |  |

ENAS missing!

| Perplexity<br>valid test |                                                    | Params<br>(M)                                                                                                                                                                           | Search Cost<br>(GPU days)                                                                                                                                                                                                                                            | Search<br>Method                                                                                                                                                                                                                                                                                                                                      |  |
|--------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 91.5                     | 87.0                                               | 28                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                    | manual                                                                                                                                                                                                                                                                                                                                                |  |
| _                        | 68.9                                               | —                                                                                                                                                                                       | —                                                                                                                                                                                                                                                                    | manual                                                                                                                                                                                                                                                                                                                                                |  |
| 69.1                     | 66.0                                               | 33                                                                                                                                                                                      | —                                                                                                                                                                                                                                                                    | manual                                                                                                                                                                                                                                                                                                                                                |  |
| 69.1                     | 65.9                                               | 24                                                                                                                                                                                      | —                                                                                                                                                                                                                                                                    | manual                                                                                                                                                                                                                                                                                                                                                |  |
| 66.0                     | 63.3                                               | 33                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                    | manual                                                                                                                                                                                                                                                                                                                                                |  |
| 72.4                     | 70.4                                               | 33                                                                                                                                                                                      | 0.5                                                                                                                                                                                                                                                                  | RL                                                                                                                                                                                                                                                                                                                                                    |  |
| 71.2                     | 69.6                                               | 33                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                    | gradient-based                                                                                                                                                                                                                                                                                                                                        |  |
|                          | valid<br>91.5<br>-<br>69.1<br>69.1<br>66.0<br>72.4 | valid         test           91.5         87.0           -         68.9           69.1         66.0           69.1         65.9           66.0         63.3           72.4         70.4 | valid         test         (M)           91.5         87.0         28           -         68.9         -           69.1         66.0         33           69.1         65.9         24           66.0         63.3         33           72.4         70.4         33 | valid         test         (M)         (GPU days)           91.5         87.0         28         -           -         68.9         -         -           69.1         66.0         33         -           69.1         65.9         24         -           66.0         63.3         33         -           72.4         70.4         33         0.5 |  |

# Summary

#### Main results

- 1. Proves gradient-based approach is possible and appropriate
- 2. Competitive results on accuracy
- 3. Outperforms all existing gradient-free methods in speed ?
- 4. Demonstrated transferability from small to large datasets:
  - a. CNN: CIFAR-10 to ImageNet
  - b. RNN: PTB to WikiText-2

### Advantages of DARTS

- 1. Fast and accurate
- 2. No controllers
- 3. General enough for CNN and RNN

#### **Discussion points:**

- 1. Why was ENAS not compared?
- 2. ENAS performance comes close despite being RL
- 3. Why Normal and Reduction cells?

# ASAP: Architecture Search, Anneal and Prune

Asaf Noy, Niv Nayman, Tal Ridnik, Nadav Zamir, Sivan Doveh, Itamar Friedman, Raja Giryes, Lihi Zelnik-Manor

AISTATS 2020

# **Problem Statement and Claims**

- Adopts the same approach of DARTS (gradient-based)
- Argues that DARTS is not fast enough, the *post-training* pruning strategy is inefficient (*relaxation bias* [Xie et al., 2019])
- Gradual *during-training* pruning results in more efficient search
- In addition to continuity and differentiability of search space, ASAP advocates annealability for more efficient optimization.
- Claims to bring 1-4 GPU days of DART down to hours.



## Method

## A generalization of DARTS to annealable search space: DARTS + anneal and prune strategy

$$o \in \mathcal{O} \qquad x^{(j)} = \sum_{i < j} o^{(i,j)}(x^{(i)}) \qquad \bar{o}^{(i,j)}(\boldsymbol{x};T) = \sum_{o \in \mathcal{O}} \Phi_o(\boldsymbol{\alpha}^{(i,j)};T) \cdot o(\boldsymbol{x};T)$$
$$\Phi_o(\boldsymbol{\alpha}^{(i,j)};T) = \frac{\exp\left\{\frac{\boldsymbol{\alpha}_o^{(i,j)}}{T}\right\}}{\sum_{o' \in \mathcal{O}} \exp\left\{\frac{\boldsymbol{\alpha}_o^{(i,j)}}{T}\right\}} \qquad \dim \boldsymbol{\alpha}^{(i,j)} = |\mathcal{O}|$$

 $\Phi_o$  forms a uniform (distribution) for  $\, _{T \, 
ightarrow \, \infty}$  and sparse for  $\, _{T \, 
ightarrow \, 0}$ 

Annealing schedule:  $T(t) = T_0 \beta^t$ 

Threshold policy:  $\Theta \equiv \theta_0$ 

Stopping condition: when only a single operation is left in  $\mathcal{O}$  for a (i, j)

Key to success is the balance between T(t) and  $\Theta$ 

Algorithm 1 ASAP for a single Mixed Operation 1: Input: Operations  $o_i \in \mathcal{O}$   $i \in \{1, ..., N\}$ , Annealing schedule  $T_t$ , Grace-temperature  $\tau$ , Threshold policy  $\theta_t$ , 2: Init:  $\alpha_i \leftarrow 0, i \in \{1, .., N\}.$ 3: while |O| > 1 do Update  $\boldsymbol{\omega}$  by descent step over  $\nabla_{\boldsymbol{\omega}} \mathcal{L}_{\text{train}}(\boldsymbol{\omega}, \boldsymbol{\alpha}; T_t)$ 4: if  $T_t < \tau$  then 5: 6: Update  $\alpha$  by descent step over  $\nabla_{\alpha} \mathcal{L}_{val}(\omega, \alpha; T_t)$ 7: for each  $o_i \in \mathcal{O}$  such that  $\Phi_{o_i}(\boldsymbol{\alpha}; T_t) < \theta_t$  do  $\mathcal{O} = \mathcal{O} \setminus \{o_i\}$ 8: end for 9: end if 10: Update  $T_t$ 11: Update  $\theta_t$ 12: 13: end while 14: return O



# **Experiments**

Follows the same experiment design of DARTS:

Fix outer structure  $\Rightarrow$  search operations in a cell  $\Rightarrow$  scale up outer structure  $\Rightarrow$  train CNN

Architecture search in a small structure on CIFAR-10 took only 4.8 hours on single GPU.







Learned cells on CIFAR-10

# Experiments

#### Transferability tests:

| Architecture | CINIC-10 | FREIBURG | CIFAR-100 | SVHN     | FMNIST   | ImageNet | Search            |
|--------------|----------|----------|-----------|----------|----------|----------|-------------------|
|              | Error(%) | Error(%) | Error(%)  | Error(%) | Error(%) | Error(%) | $\cot \downarrow$ |
| Known SotA   | 8.6      | 21.1     | 8.7       | 1.02     | 3.65     | 15.7     | -                 |
| AmoebaNet-A  | 7.18     | 11.8     | 15.9      | 1.93     | 3.8      | 24.3     | 3150              |
| NASNet       | 6.93     | 13.4     | 15.8      | 1.96     | 3.71     | 26.0     | 1800              |
| PNAS         | 7.03     | 12.3     | 15.9      | 1.83     | 3.72     | 25.8     | 150               |
| SNAS         | 7.13     | 14.7     | 16.5      | 1.98     | 3.73     | 27.3     | 1.5               |
| DARTS-Rev1   | 7.05     | 11.4     | 15.8      | 1.94     | 3.74     | 26.9     | 1                 |
| DARTS-Rev2   | 6.88     | 10.8     | 15.7      | 1.85     | 3.68     | 26.7     | 1                 |
| ASAP         | 6.83     | 10.7     | 15.6      | 1.81     | 3.73     | 24.4     | 0.2               |

## **Experiments**

Effect of *relaxation-bias*:



# Summary

- A generalization of DARTS into annealable search space
- ASAP anneals and prunes the connection weights within the cell in a continuous manner
- Based on the insight that pruning during training reduces complexity and speeds up search.
- Theoretical results are available that enable good tradeoff between annealing schedule and threshold policy
- Achieves better training speed than DARTS while maintaining good accuracy

Discussion points:

- The pruning strategy does not account for too many parents for a node in the cell. DARTS fixed this manually (k=2).
- 2. In spite of not fixing the above, all nodes in the learned cells have exactly two parents. This is a mystery!



## References

[Elshawi et al., 2019] Elshawi, Radwa, Mohamed Maher, and Sherif Sakr. "Automated machine learning: State-of-the-art and open challenges." *arXiv preprint arXiv:1906.02287* (2019).

[Zoph et al., 2018] Zoph, Barret, et al. "Learning transferable architectures for scalable image recognition." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2018.

[Real et al., 2018] Real, Esteban, et al. "Regularized evolution for image classifier architecture search." *Proceedings of the aaai conference on artificial intelligence*. Vol. 33. 2019.

[Xie et al., 2019] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: Stochastic neural architecture search. In *International Conference on Learning Representations* (ICLR), 2019.