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Problem definition

e CASH Problem : Combined Algorithm Selection and Hyper-parameter tuning

A(i)* = a?‘gmin L(A(i), Dtraina Dvalidation)
Ae A

e Goal: Select an ML algorithm that can achieve optimal performance in both
the training and validation set, given a specific time budget constraint.



Meta-Learning

Warm starting of the optimization algorithm by leveraging previous learning
experiences.

Learning based on task properties:

o Use constructed meta-features to compute the similarity between two datasets

o Build a meta-model that learns the statistical properties of the previous dataset

Learning from previous model evaluations:

o Train a meta-learner on previous evaluations of the ML model (parameters 6., task t.) to

predict new parameters ©* new for a new task t*

Learning from already pretrained models:

o Transfer Learning: utilize pretrained models, trained on a task t, for training on a new task tj

given certain similarity between t and tj



Neural Architecture Search for Deep Learning

e Technique for automatic design of deep Artificial Neural Networks

e Random Search:Randomly sample neural architectures from a bounded

search space

e Reinforcement Learning: An agent explores the finite search space of

architectures with the goal of maximizing the performance on the given task

e Gradient-based optimization: Explore the continuous search space with the

help of gradient descent

e Evolutionary Methods: They are based on genetic algorithms or hierarchical

evolution

e Bayesian optimization: They rely on Gaussian processes or tree-based

models



Hyperparameter Optimization (1)

Black-Box optimization: The analytical form of the objective function is not

known, only the results of evaluating this function at different points can be
used.
Grid Search \ Random Search:

o Easily parallelizable methods
o Given a computational budget, random search is better

Bayesian Optimization: Suitable for computationally expensive objective
functions

Simulated Annealing: Update each hyperparameter value based on the
neighbourhood states

Genetic Algorithms: Apply genetic operations to a population of
hyperparameter configurations



Hyperparameter Optimization (2)

e Multi-fidelity optimization: Use a small part of the dataset to evaluate the

objective function (low-fidelity evaluation)

o Use many low-fidelity evaluation instead of one high-fidelity evaluation

o Trade-off between computational cost and optimization performance

e Modeling learning curves: Uses the progression of the learning curve as the
stopping criterion for the hyperparameter optimization

e Successive halving: multi-fidelity method which keeps only the best half of the
tested configurations at each step

e HyperBand: multi-fidelity method that applies Successive halving on randomly

sampled configurations



Tools and Frameworks

e Centralized Frameworks:

o designed to run on a single machine

o suitable for handling small to medium datasets
e Distributed Frameworks:

o  Utilize multi-node systems for solving the CASH probrem for bigger datasets
e Cloud-based Frameworks:

o Utilize the computational power of cloud-based environments
o Typically require minimal user experience

o Compatible with other services in the same cloud ecosystem
e Neural Network Automation Frameworks:

o find neural network architectures that are competitive with architectures designed by human

expert



Other automation aspects
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Summary

e Good overview of all available methods and tools for automatizing the ML
pipeline

e It would be probably insightful to analyse all the presented methods from the
perspective of the budget constraint

e Expand the survey to include AutoML methods for massive neural
architectures



Hyperparameter Optimization



e Machine learning algorithms can be very sensitive
to hyperparameter settings. So choosing the right
one is crucial.

e Hyperparameters
o Learning rate
o Regularization
o Architecture

e Budget

O



BOHB: Robust and Efficient Hyperparameter
optimization at Scale

Stefan Falkner, Aaron Klein, Frank Hutter

PMLR 2018



Motivation

e Bayesian based methods for HPO are typically computationally infeasible.
e Random search based methods (such as Hyperband) are faster but do not
converge to good solutions.

Contribution
e Create a best of both worlds approach called BOHB



Bayesian Optimization (BO)

e Density over input configuration space is estimated to select new candidate
configurations to evaluate.

Hyperband (HB)

e Cheap to evaluate approx. versions of objective function are defined given a
budget. Higher the budget higher the quality of the estimate.

e Budget here can be the num. of iterations, num. of data points, num. of steps
in MCMC algo., num. of trials in deep reinforcement learning etc.

e Invoke successive halving (SHA) to select and promote configurations.



Successive Halving (SHA)

loss

0% budget 700 %

e Distribute the budget over ‘n’ random initial configurations.
e Evaluate and promote the best half to the next rung with double the budget.
e lterate till one remains.



BOHB

Algorithm 2: Pseudocode for sampling in BOHB

input :observations D, fraction of random runs p,
percentile ¢, number of samples N,
minimum number of points V,,;, to build
a model, and bandwidth factor b,,

output : next configuration to evaluate

if rand() < p then return random configuration

b=argmax{Dy : |Dp| > Npin + 2}

if b = () then return random configuration

fit KDEs according to Egs. (2) and (3)

draw N samples according to I'(x) (see text)

return sample with highest ratio [(x) /g(x)

BO does model based search for
suitable configurations.

HB selects the num. of
configurations and assigns budget.
Model is updated based on
evaluated configurations.

lterate.



Parallel resources
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Performance of BOHB with different number of parallel workers for 128 iterations on the surrogate letter benchmark. The speedups are close to linear.

e |In BOHB multiple configurations need to be evaluated independently at each
iteration.

e This can be parallelized.



Evaluation over various scenarios



Best of both worlds BOHB
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e Optimizing 6 hyperparameters of a neural network.
e Has strong anytime performance obtained from HB.
e Has strong final performance obtained from BO.



Stochastic Counting Ones

8 + 8 dimensions
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Support Vector Machines

validation error

Surrogate of SVM on MNIST
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Setup: Surrogate imitates
optimization of SVM with RBF
kernel

Tunable hyperparameters (2)
Budget: num. of training data
points for HB, BOHB, full set for
the others.

Take away: GP-BO and RS are
too slow. Fabolas, HB and
BOHB find good configuration
quickly with Fabolas having the
fastest initial speedup.



Feed-forward Neural Networks

regret
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Bayesian Neural Networks

negative log-likelihood
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Setup: 2 layered fully connected
Bayesian neural network trained with
MCMC sampling.

Tunable hyperparameters (4):
o step length,
o length of burn-in period,
o num. of units in each layer,
o decay parameter of momentum.

Dataset: Boston housing
Budget: 500-10000 MCMC steps

Take away: BOHB converged faster than
both HB and TPE (BO) and even found a
better configuration than the baselines.



Reinforcement Learning

epochs until convergence

Cartpole
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Setup: Proximal policy
optimization to learn the
cartpole swing-up task.
Tunable hyperparameters (8)
Budget: BOHB and HB 1-9
trials, others fixed 9 trials.
Take away: BOHB starts same
as HB but converged to better
configurations. TPE did not
have enough budget to find the
same.



Convolutional Neural Networks

e Tunable hyperparameters: learning rate, momentum, weight decay, batch
size.

e Budget: 22,66,200,600 epochs.

e 19 parallel workers

e Take away: BOHB is practically useful for resource constrained optimization.



Limitations

e Small budgets gives us cheap approximations of objective function.

e This assumes that relative ranking of configurations mostly hold even for
small budgets.

e |[f this is not true and the approximation is too noisy then it will result in BHOB
being slower than BO and worse than than even random search.

e To overcome this BHOB samples a fixed fraction (1/3) of configurations
randomly. This avoids missing good configurations hiding among bad ones.



Summary

e BOHB combines good initial performance of HB and good convergence
properties of BO.

e BO component helps guide the search and results in faster convergence

e HB component helps get a quick start through SHA and results in good initial
speedup.

e Solution is robust , flexible, scalable gives strong anytime and final
performance.

e Code has been made available.



A System for Massively Parallel Hyperparameter
Tuning

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina
Gonina, Jonathan Ben-Tzur, Moritz Hardt,
Benjamin Recht, Ameet Talwalkar

MLSys 2020



Motivation

e Usually, with increasingly large models, the available additional budget for
HPO is low.

e Massive parallelization is the way to go.

e Adaptive search based methods are iterative and hard to parallelize.

e Grid and random search are trivial to parallelize but don’t scale well with
increased num. of hyperparameters.

e Synchronous hyperparameter tuning methods struggle from stragglers.

e There is a need for production grade hyperparameter tuning systems.



Contribution

e Asynchronous SHA called ASHA.
e A method to parallelize ASHA.
e Deploy ASHA in a production grade system.



Async SHA: ASHA

Successive Halving (Synchronous) ) Jobs for each Worker
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Single Machine Experiments
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PBT is the state-of-the-art evolutionary
method that iteratively improves fitness of
configurations.

Benchmark 1:
o SHA and ASHA do better than PBT.

Benchmark 2:
o SHA, ASHA and PBT do comparably.

Both cases, ASHA does not degrade
performance even though it is async.



Distributed experiments

e 25 workers.
e Benchmark 1;
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ASHA better than PBT, comparable to BOHB.

ASHA took 40 min to evaluate 1000 configurations
and find a good one using 25 workers.

This is about the same time as needed to train for a
single configuration on 1 worker.

In a serial setting this would take 400 min.

Increase in # workers by 25 led to only 10 X speedup
due to relative simplicity of the task.

e Benchmark 2:

o O O

ASHA comparable to PBT, better than BOHB.
ASHA took 25 min while using 25 workers.

It took 700 min while using 1 worker.

Speedup in linear since this is a harder task that can
leverage the additional workers.



Distributed Large-scale experiments

LSTM on PTB
— ASHA  — \Vizier e 500 workers.
e \izieris Google’s internal
hyperparameter optimizer.
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Production grade ASHA

e Simplified user interface with same input as random search.

e Stopping criteria is a fixed number of configurations.

e Use Paleo predicted trade-off curves to choose number of GPUs per
configuration for a given efficiency.

e A fair share scheduler that adaptively allocated resources over the lifetime of
a job.

e Reproducible checkpoints and state saving for pause and restart feature.



Summary

e Making SHA async (ASHA) does not degrade its performance and allows for

massive parallelization of HPO.
e Parallelized ASHA does comparable or better than PBT, SHA and BOHB.

e A production grade HPO system was developed with many contributions in
the form of informed design decisions.



Network Architecture Search (NAS)



DARTS: DIFFERENTIABLE
ARCHITECTURE SEARCH

Hanxiao Liu, Karen Simonyan, Yiming Yang

ICLR 2019



Motivation

Random Search

Reinforcement
Learning

2000 GPU days [Zoph et al., 2018]

Neural Architecture

Gradient-based
Search Methods

Evolutionary Methods

Bayesian Optimization

[Elshawi et al., 2019]

Main problem: large discrete search
space

SOTA methods are gradient-free:
e Black-box search in a discrete
non-differentiable space
e  Significantly slower
4 GPU Days, DARTS

3150 GPU days [Real et al., 2018]



Main contribution

A method for gradient-based search for network architecture:

e Main idea: relax the discrete set of candidate architecture to be a
continuous space and apply gradient descent

e Orders of magnitude gain in computation time due to the better
efficiency of gradient-based optimization

e Generic enough for CNN and RNN



NASNet Search Space and the Cell izopn eta., 2019

Steps:

1.  Constrain all cells to have the same
architecture

2. Design a small outer structure and
search for a cell architecture on a smaller
dataset (CIFAR-10)

3. Preserve the cell architecture and scale
up to a larger outer structure

4. Train on a larger dataset (ImageNet) that
we really want

x N

Quter Structure Cell Stack Cell

x N

x N

I:I Convolution, pooling,
identity, none

Fix outer structure = search operations in a cell = scale up outer structure = train CNN

@ Addition, concatenation



DARTS: Continuous Search Space

A cell is a DAG consisting of sequence of N nodes:
e Eachnode z(®is an intermediate result (tensor)
e  Each directed edge (%, j)is an operation (e.g.
convolution)
e Two input nodes and a single output node

For each intermediate node j: =) = Z 0(53) (z(0))
i<j

Output of the cell is obtained by reduction operation

(addition / concatenation) to all intermediate nodes

Continuous relaxation and optimization:
(i-)
5(@]’)(%) — Z exp(ao ™)

0€O Zo'e(’) exp(aff,’]))

o(x)
O is the set of operations and dim (&)= |O|

Architecture search :

Learn a = {a(i’j)}(set of continuous mixing weights) and olhd) = argmaX,con Qo

N=4
— -
o
: B9
T N
CNN RNN
O: O:

Linear transformations
tanh, relu, sigmoid

3X3, 5X5 sep & dilated sep conv
3X3 max & avg pooling

Zero Identity, Zero
N=7 N=12
Cell stack Single cell

(4,4)



Bilevel Optimization

Joint learning of architecture o and network weights .

Optimize for &*  min £, (w* (), @)

Weights (w)

s.t. w*(a) = argmin, Lipqin(w, @)

Approximation:

*
VaLoa(w'(a), @) 05 10 15 20 25 30 35
~V o Loyval (w — vaﬁﬁain (’LU, Ot), Oé) Architecture ()
Final architecture selection: L] E}
2 // \
O(i,j) = argmaxoeo a(()%.?) li] X L_xL_—‘I
But, a node could be connected to too many predecessors! ? e

DARTS employs pruning: retain only k strongest connections o g



Experiment design

Small dataset
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ImageNet/ architecture
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Final evaluation M(6%) O Final network

training

ImageNet /
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Large dataset
(training set)



CIFAR-10 CIFAR-10 Penn Treebank Penn Treebank
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Normal cell (CIFAR-10)

Note:
1.  Exactly 2 incoming connections for
CNN cells
2.  Exactly 1 incoming node for RNN
cells
3.  The above are enforced through a
pruning strategy
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Reduction cell (CIFAR-10)
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Comparison

Avaiittectiore Test Error (%) Params +x  Search Cost Search
top-1 top-3 ™M) (M) (GPU days) Method
Inception-v1 (Szegedy et al., 2015) 30.2 10.1 6.6 1448 - manual
MobileNet (Howard et al., 2017) 29.4 10.5 42 569 — manual
ShuffleNet 2x (¢ = 3) (Zhang et al., 2017)  26.3 - ~5 524 - manual
NASNet-A (Zoph et al., 2018) 26.0 8.4 5.3 564 2000 RL
NASNet-B (Zoph et al., 2018) 27.2 8.7 5.3 488 2000 RL
NASNet-C (Zoph et al., 2018) 27.5 9.0 4.9 558 2000 RL
AmoebaNet-A (Real et al., 2018) 25.5 8.0 51 555 3150 evolution
AmoebaNet-B (Real et al., 2018) 26.0 8.5 53 555 3150 evolution
AmoebaNet-C (Real et al., 2018) 24.3 7.6 6.4 570 3150 evolution
PNAS (Liu et al., 2018a) 25.8 8.1 5.1 588 ~225 SMBO
DARTS (searched on CIFAR-10) 26.7 8.7 4.7 574 4 gradient-based

Architecture Perplexity Params Search Cost Search

valid test (M) (GPU days) Method
LSTM + augmented loss (Inan et al., 2017) 915 87.0 28 - manual
LSTM + continuous cache pointer (Grave et al., 2016) - 68.9 - - manual
LSTM (Merity et al., 2018) 69.1 66.0 33 - manual
LSTM + skip connections (Melis et al., 2018) 69.1 659 24 - manual
LSTM + 15 softmax experts (Yang et al., 2018) 66.0 633 33 - manual
ENAS (Pham et al., 2018b)' (searched on PTB) 724 704 33 0.5 RL

712 69.6 33 1 gradient-based

DARTS (searched on PTB)

ENAS missing!

4



Summary

Main results

1.

el

Proves gradient-based approach is
possible and appropriate
Competitive results on accuracy
Outperforms all existing gradient-free
methods in speed ?
Demonstrated transferability from
small to large datasets:
a. CNN: CIFAR-10 to ImageNet
b. RNN: PTB to WikiText-2

Advantages of DARTS

1.
2.
3.

Fast and accurate
No controllers
General enough for CNN and RNN

Discussion points:

1.
2.

3.

Why was ENAS not compared?
ENAS performance comes close
despite being RL

Why Normal and Reduction cells?



ASAP: Architecture Search, Anneal and
Prune

Asaf Noy, Niv Nayman, Tal Ridnik, Nadav Zamir, Sivan Doveh, Iltamar
Friedman, Raja Giryes, Lihi Zelnik-Manor

AISTATS 2020



Adopts the same approach of DARTS
(gradient-based)

Argues that DARTS is not fast enough, the
post-training pruning strategy is inefficient
(relaxation bias [Xie et al., 2019])

Gradual during-training pruning results in more
efficient search

In addition to continuity and differentiability of
search space, ASAP advocates annealability for
more efficient optimization.

Claims to bring 1-4 GPU days of DART down to
hours.

Problem Statement and Claims
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Algorithm 1 ASAP for a single Mixed Operation
1: Input: Operations o; € O i € {1,.., N},

Annealing schedule 7},

A generalization of DARTS to annealable search space: DARTS + Grace-temperature 7,
anneal and prune strategy Threshold policy 6;,
2: Init: a; + 0, i€ {1,..,N}.
3: while |O| > 1do
o€ O l'(j) _ Z O(i,j)(x(i)) (W) m T Z (I) albd). T ( ) 4:  Update w by descent step over Vo, Liyain(w, c; T})

L —t 5. if T; < 7 then
1<J 6: Update o by descent step over V o Lyal(w, o; Tt)
alid) 7: for each o; € O such that ®,, (a;; T;) < 6, do
. xp { 252} A S
). _ i 3J) = ¢
Do(al™);T) = o dim a(9)= |0 9: end for
Eo'eo exp { % } 10:  end if
11:  Update T}
12:  Update 6,
®, forms a uniform (distribution) for 7 _s o and sparse for 7 _ 13: end while
14: return O
Annealing schedule: T'(t) = Ty /3" ]
Threshold policy: © = 9, E]. ? m/
Stopping condition: when only a single operation is left in O for a (i, ) A Iil m

Key to success is the balance between T'(t)and @ N Eﬁ o7



Experiments

Follows the same experiment design of DARTS: jFae >

Fix outer structure = search operations in a cell = scale up outer structure = train CNN

Architecture search in a small structure on CIFAR-10 took only 4.8 hours

on single GPU.
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(no transfer)

Learned cells on CIFAR-10



Experiments

Transferability tests:

Architecture CINIC-10 | FREIBURG | CIFAR-100 | SVHN | FMNIST | ImageNet Search
Error(%) Error(%) Error(%) Error(%) | Error(%) | Error(%) cost |
Known SotA 8.6 21.1 8.7 1.02 3.65 15.7 -
AmoebaNet-A 7.18 11.8 15.9 1.93 3.8 24.3 3150
NASNet 6.93 134 15.8 1.96 3e71 26.0 1800
PNAS 7.03 12.3 15.9 1.83 3.72 25.8 150
SNAS 7.13 14.7 16.5 1.98 3.73 27.3 1.5
DARTS-Rev1 7.05 11.4 15.8 1.94 3.74 26.9 1
DARTS-Rev2 6.88 10.8 15:7 1.85 3.68 26.7 1
ASAP 6.83 10.7 15.6 1.81 3.73 24.4 0.2




Experiments

Effect of relaxation-bias:
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Summary

e Ageneralization of DARTS into annealable Discussion points:
search space

1. The pruning strategy does not account for

e ASAP anneals and prunes the connection too many parents for a node in the cell.
weights within the cell in a continuous manner DARTS fixed this manually (k=2).

e |Based on the insight that pruning during training 2. In spite of not fixing the above, all nodes in
reduces complexity and speeds up search. the learned cells have exactly two parents.

This is a mystery!
e Theoretical results are available that enable good
tradeoff between annealing schedule and
threshold policy

e Achieves better training speed than DARTS while
maintaining good accuracy
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