

Automated Machine Learning (AutoML)

Amir H. Payberah payberah@kth.se 2020-11-23

The Course Web Page

https://fid3024.github.io

The Machine Learning Process

- ▶ Building an ML model is an iterative, complex, and time-consuming process.
- It can take a lot of trial and error.

[Elshawi et al., Automated Machine Learning: State-of-The-Art and Open Challenges, 2019]

Automated vs. Manual Machine Learning

► AutoML: build models in a data-driven, intelligent, and purposeful way.

[Joaquin Vanschoren, Automatic Machine Learning - A Tutorial]

AutoML Subproblems - Neural Architecture Search

Represent and search all pipelines or neural nets, e.g., neural layers, interconnections, etc.

[Joaquin Vanschoren, Automatic Machine Learning - A Tutorial]

AutoML Subproblems - Hyperparameter Optimization

▶ Which hyperparameters are important? How to optimize them?

AutoML Subproblems - Meta-learning

- How can we transfer experience from previous tasks?
- Don't start from scratch (search space is too large).

• A denotes an ML algorithms with m hyperparameters.

- ▶ A denotes an ML algorithms with m hyperparameters.
- $\{A_1, A_2, \cdots, A_n\}$ is a set of ML algorithms.

- ► A denotes an ML algorithms with m hyperparameters.
- \blacktriangleright $\{A_1,A_2,\cdots,A_n\}$ is a set of ML algorithms.
- $\blacktriangleright \ \Lambda_j$ is the domain of jth hyperparameter.

- ► A denotes an ML algorithms with m hyperparameters.
- \blacktriangleright $\{A_1,A_2,\cdots,A_n\}$ is a set of ML algorithms.
- \blacktriangleright Λ_j is the domain of jth hyperparameter.
- $\Lambda = \Lambda_1 \times \Lambda_2 \times \cdots \times \Lambda_m$ is the overall hyperparameter configuration space.

- ► A denotes an ML algorithms with m hyperparameters.
- \blacktriangleright $\{A_1,A_2,\cdots,A_n\}$ is a set of ML algorithms.
- \blacktriangleright Λ_j is the domain of jth hyperparameter.
- $\Lambda = \Lambda_1 \times \Lambda_2 \times \cdots \times \Lambda_m$ is the overall hyperparameter configuration space.
- $\theta \in \Lambda$ is a vector of hyperparameters.

- ► A denotes an ML algorithms with m hyperparameters.
- $\{A_1, A_2, \cdots, A_n\}$ is a set of ML algorithms.
- Λ_j is the domain of jth hyperparameter.
- $\Lambda = \Lambda_1 \times \Lambda_2 \times \cdots \times \Lambda_m$ is the overall hyperparameter configuration space.
- $\theta \in \Lambda$ is a vector of hyperparameters.
- ► J(θ, X_{train}, X_{valid}) is the loss of the ML model created by θ, trained on X_{train}, and validated on X_{valid}.

- ► A denotes an ML algorithms with m hyperparameters.
- $\{A_1, A_2, \cdots, A_n\}$ is a set of ML algorithms.
- Λ_j is the domain of jth hyperparameter.
- $\Lambda = \Lambda_1 \times \Lambda_2 \times \cdots \times \Lambda_m$ is the overall hyperparameter configuration space.
- $\theta \in \Lambda$ is a vector of hyperparameters.
- ► J(θ, X_{train}, X_{valid}) is the loss of the ML model created by θ, trained on X_{train}, and validated on X_{valid}.
- ► Find the configuration that minimizes the expected loss on a dataset X_{train} : $\theta^* = \arg \min_{\theta \in \Lambda} \mathbb{E}_{(X_{\text{train}}, X_{\text{valid}}) \sim X} J(\theta, X_{\text{train}}, X_{\text{valid}})$

- ► Continuous
 - E.g., learning rate

- Continuous
 - E.g., learning rate
- Integer
 - E.g., number of hidden units

- Continuous
 - E.g., learning rate
- Integer
 - E.g., number of hidden units
- Categorical
 - E.g., choose of operator (Convolution, MaxPooling, DropOut, etc.)
 - E.g., activation function (ReLU, Leaky ReLU, tanh, etc.)

- Continuous
 - E.g., learning rate
- Integer
 - E.g., number of hidden units
- Categorical
 - E.g., choose of operator (Convolution, MaxPooling, DropOut, etc.)
 - E.g., activation function (ReLU, Leaky ReLU, tanh, etc.)
- Conditional
 - E.g., convolution kernel size, if convolution layer is selected

Black-box optimization

Multi-fidelity optimization

Black-box optimization

- Grid search
- Random search
- Population-based search
- Bayesian optimization
- Multi-fidelity optimization

Black-box optimization

- Grid search
- Random search
- Population-based search
- Bayesian optimization

Multi-fidelity optimization

- Modeling learning curve
- Bandit based

Black-box optimization

- Grid search
- Random search
- Population-based search
- Bayesian optimization
- Multi-fidelity optimization
 - Modeling learning curve
 - Bandit based

Black-box Optimization - Grid and Random Search

[Hutter et al., Automated Machine Learning, 2019]

► They maintain a population, i.e., a set of configurations.

- ► They maintain a population, i.e., a set of configurations.
- Improve this population to obtain a new generation of better configurations.

- ► They maintain a population, i.e., a set of configurations.
- ► Improve this population to obtain a new generation of better configurations.
- Achieve this by applying:
 - Local perturbations (so-called mutations)
 - Combinations of different members (so-called crossover)

- ► They maintain a population, i.e., a set of configurations.
- ► Improve this population to obtain a new generation of better configurations.
- Achieve this by applying:
 - Local perturbations (so-called mutations)
 - Combinations of different members (so-called crossover)
- ▶ E.g., genetic algorithms, evolutionary algorithms, particle swarm optimization

Start with a few (random) hyperparameter configurations.

[Hutter et al., Automated Machine Learning, 2019]

Black-box Optimization - Bayesian Optimization (1/3)

- Start with a few (random) hyperparameter configurations.
- ► Fit a surrogate model to predict other configurations.

[Hutter et al., Automated Machine Learning, 2019]

Black-box Optimization - Bayesian Optimization (1/3)

- Start with a few (random) hyperparameter configurations.
- ► Fit a surrogate model to predict other configurations.
- An acquisition function drives the proposition of new points to test, in an exploration and exploitation trade-off.

[Hutter et al., Automated Machine Learning, 2019]

Black-box Optimization - Bayesian Optimization (1/3)

- ► Start with a few (random) hyperparameter configurations.
- ► Fit a surrogate model to predict other configurations.
- An acquisition function drives the proposition of new points to test, in an exploration and exploitation trade-off.
- ► Sample for the best configuration under that function.

[Hutter et al., Automated Machine Learning, 2019]

Black-box Optimization - Bayesian Optimization (2/3)

Black-box Optimization - Bayesian Optimization (2/3)

t = 3

Black-box Optimization - Bayesian Optimization (2/3)

t = 4

[Hutter et al., Automated Machine Learning, 2019]

Black-box Optimization - Bayesian Optimization (3/3)

Hyper-Parameter Optimization

Black-box optimization

- Grid search
- Random search
- Population-based search
- Bayesian optimization

Multi-fidelity optimization

- Modeling learning curve
- Bandit based

Massive dataset sizes and complex models make blackbox performance evaluation expensive.

- Massive dataset sizes and complex models make blackbox performance evaluation expensive.
- Probe a hyperparameter configuration on a small subset.

- Massive dataset sizes and complex models make blackbox performance evaluation expensive.
- Probe a hyperparameter configuration on a small subset.
- Multi-fidelity methods use low fidelity approximations of the actual loss function to minimize.

- Massive dataset sizes and complex models make blackbox performance evaluation expensive.
- Probe a hyperparameter configuration on a small subset.
- Multi-fidelity methods use low fidelity approximations of the actual loss function to minimize.
- These approximations introduce a tradeoff between optimization performance and runtime.

Learning curve extrapolation is used in predicting early termination for a particular configuration.

- Learning curve extrapolation is used in predicting early termination for a particular configuration.
- ► Models learning curves during hyper-parameter optimization.

- Learning curve extrapolation is used in predicting early termination for a particular configuration.
- ► Models learning curves during hyper-parameter optimization.
- Decides whether to allocate more resources or to stop the training procedure for a particular configuration.

- Learning curve extrapolation is used in predicting early termination for a particular configuration.
- ► Models learning curves during hyper-parameter optimization.
- Decides whether to allocate more resources or to stop the training procedure for a particular configuration.
- The learning process is terminated if the performance of the predicted configuration is less than the performance of the best model trained so far in the optimization process.

Multi-fidelity Optimization - Bandit-Based

- Successive halving algorithm (SHA)
- HyperBand

Train on small subsets, infer which regions may be interesting to evaluate in more depth.

[Hutter et al., Automated Machine Learning, 2019]

- Train on small subsets, infer which regions may be interesting to evaluate in more depth.
- ► Randomly sample candidates and evaluate on a small data sample.

[Hutter et al., Automated Machine Learning, 2019]

- Train on small subsets, infer which regions may be interesting to evaluate in more depth.
- ► Randomly sample candidates and evaluate on a small data sample.
- E.g., retrain the 50% best candidates on twice the data.

[Hutter et al., Automated Machine Learning, 2019]

- Successive halving for eight algorithms/configurations.
- ► After evaluating all algorithms on 1/8 of the total budget, half of them are dropped and the budget given to the remaining algorithms is doubled.

[Hutter et al., Automated Machine Learning, 2019]

<u>SUCCESSIVEHALVING</u> (Finite horizon) input: Budget *B*, and *n* arms where $\ell_{i,k}$ denotes the *k*th loss from the *i*th arm, maximum size *R*, $\eta \ge 2$ ($\eta = 3$ by default). Initialize: $S_0 = [n]$, $s = \min\{t \in \mathbb{N} : nR(t+1)\eta^{-t} \le B, t \le \log_{\eta}(\min\{R, n\})\}$. For $k = 0, 1, \ldots, s$ Set $n_k = \lfloor n\eta^{-k} \rfloor$, $r_k = \lfloor R\eta^{k-s} \rfloor$ Pull each arm in S_k for r_k times. Keep the best $\lfloor n\eta^{-(k+1)} \rfloor$ arms in terms of the r_k th observed loss as S_{k+1} . Output : $\hat{i}, \ell_{\hat{i},R}$ where $\hat{i} = \arg\min_{i \in S_{n+1}} \ell_{i,R}$

► Successive halving suffers from the budget-vs-number of configurations trade off.

- ► Successive halving suffers from the budget-vs-number of configurations trade off.
- Given a total budget, the user has to decide beforehand whether:

- ► Successive halving suffers from the budget-vs-number of configurations trade off.
- Given a total budget, the user has to decide beforehand whether:
 - to try many configurations and only assign a small budget to each, or

- ► Successive halving suffers from the budget-vs-number of configurations trade off.
- Given a total budget, the user has to decide beforehand whether:
 - to try many configurations and only assign a small budget to each, or
 - to try only a few and assign them a larger budget.

- ► Successive halving suffers from the budget-vs-number of configurations trade off.
- Given a total budget, the user has to decide beforehand whether:
 - to try many configurations and only assign a small budget to each, or
 - to try only a few and assign them a larger budget.
- Assigning too small a budget can result in prematurely terminating good configurations.

- ► Successive halving suffers from the budget-vs-number of configurations trade off.
- Given a total budget, the user has to decide beforehand whether:
 - to try many configurations and only assign a small budget to each, or
 - to try only a few and assign them a larger budget.
- Assigning too small a budget can result in prematurely terminating good configurations.
- Assigning too large a budget can result in running poor configurations too long and thereby wasting resources.

Multi-fidelity Optimization - HyperBand (1/2)

 HyperBand combats SHA problem when selecting from randomly sampled configurations.

Multi-fidelity Optimization - HyperBand (1/2)

- HyperBand combats SHA problem when selecting from randomly sampled configurations.
- It divides the total budget into several combinations of number of configurations vs. budget for each.

Multi-fidelity Optimization - HyperBand (1/2)

- HyperBand combats SHA problem when selecting from randomly sampled configurations.
- It divides the total budget into several combinations of number of configurations vs. budget for each.
- ► Then it calls SHA on each set of random configurations.

Multi-fidelity Optimization - HyperBand (2/2)

Algorithm 1: HYPERBAND algorithm for hyperparameter optimization. : R, η (default $\eta = 3$) input initialization: $s_{\max} = \lfloor \log_{\eta}(R) \rfloor$, $B = (s_{\max} + 1)R$ 1 for $s \in \{s_{\max}, s_{\max} - 1, \dots, 0\}$ do $n = \left\lceil \frac{B}{R} \frac{\eta^s}{(s+1)} \right\rceil, \qquad r = R\eta^{-s}$ $\mathbf{2}$ // begin SuccessiveHalving with (n, r) inner loop 3 $T = get_hyperparameter_configuration(n)$ for $i \in \{0, ..., s\}$ do 4 $n_i = \lfloor n\eta^{-i} \rfloor$ 5 $r_i = rn^i$ 6 $L = \{ \texttt{run_then_return_val_loss}(t, r_i) : t \in T \}$ 7 $T = top_k(T, L, |n_i/\eta|)$ 8 end 9 10 end 11 return Configuration with the smallest intermediate loss seen so far.

- ▶ The inner loop invokes SHA for fixed values of n and r.
- ▶ The outer loop iterates over different values of n and r.

Neural Architecture Search (NAS)

► The process of automating architecture engineering.

- ► The process of automating architecture engineering.
- ► Search space: which architectures can be represented in principle.

[Hutter et al., Automated Machine Learning, 2019]

- ► The process of automating architecture engineering.
- ► Search space: which architectures can be represented in principle.
- ► Search strategy: how to explore the search space.

[Hutter et al., Automated Machine Learning, 2019]

- ► The process of automating architecture engineering.
- ► Search space: which architectures can be represented in principle.
- ► Search strategy: how to explore the search space.
- Performance estimation: to perform a standard training and validation of the architecture on data.

[Hutter et al., Automated Machine Learning, 2019]

Search Space

► Which neural architectures a NAS approach might discover.

- ► Which neural architectures a NAS approach might discover.
- Chain-structured neural network

- Which neural architectures a NAS approach might discover.
- Chain-structured neural network
- Multi-branch networks

- ► Which neural architectures a NAS approach might discover.
- Chain-structured neural network
- Multi-branch networks
- Repeated motifs

- ► A sequence of **n** layers.
- ► The i'th layer L_i receives its input from layer i 1 and its output serves as the input for layer i + 1.

- ► A sequence of **n** layers.
- ► The i'th layer L_i receives its input from layer i 1 and its output serves as the input for layer i + 1.
- ► Parameters of the search space:

- A sequence of **n** layers.
- ► The i'th layer L_i receives its input from layer i 1 and its output serves as the input for layer i + 1.
- ► Parameters of the search space:
 - The (maximum) number of layers n.

- A sequence of **n** layers.
- ► The i'th layer L_i receives its input from layer i 1 and its output serves as the input for layer i + 1.
- Parameters of the search space:
 - The (maximum) number of layers n.
 - The type of operation every layer can execute, e.g., pooling, conv.

- ► A sequence of **n** layers.
- ► The i'th layer L_i receives its input from layer i 1 and its output serves as the input for layer i + 1.
- Parameters of the search space:
 - The (maximum) number of layers n.
 - The type of operation every layer can execute, e.g., pooling, conv.
 - Hyperparameters associated with the operation, e.g., number of filters, kernel size and strides for a convolutional layer.

▶ The input of layer i: a function $g_i(L_{i-1}^{out}, \cdots, L_0^{out})$ of previous layer outputs.

- ▶ The input of layer i: a function $g_i(L_{i-1}^{out}, \cdots, L_0^{out})$ of previous layer outputs.
- ► Special cases:

- ▶ The input of layer i: a function $g_i(L_{i-1}^{out}, \cdots, L_0^{out})$ of previous layer outputs.
- ► Special cases:
 - The chain-structured networks: $g_i(L_{i-1}^{\text{out}},\cdots,L_0^{\text{out}})=L_{i-1}^{\text{out}}$

- ▶ The input of layer i: a function $g_i(L_{i-1}^{out}, \cdots, L_0^{out})$ of previous layer outputs.
- Special cases:
 - The chain-structured networks: $g_i(L_{i-1}^{\text{out}},\cdots,L_0^{\text{out}})=L_{i-1}^{\text{out}}$
 - Residual networks, where previous layer outputs are summed: $g_i(L_{i-1}^{out},\cdots,L_0^{out})=L_{i-1}^{out}+L_i^{out}, j<i$

- ▶ The input of layer i: a function $g_i(L_{i-1}^{out}, \cdots, L_0^{out})$ of previous layer outputs.
- Special cases:
 - The chain-structured networks: $g_i(L_{i-1}^{\text{out}},\cdots,L_0^{\text{out}})=L_{i-1}^{\text{out}}$
 - Residual networks, where previous layer outputs are summed: $g_i(L_{i-1}^{out},\cdots,L_0^{out})=L_{i-1}^{out}+L_i^{out}, j<i$
 - DenseNets, where previous layer outputs are out concatenated: $g_i(L_{i-1}^{out}, \cdots, L_0^{out}) = \text{concat}(L_{i-1}^{out}, \cdots, L_0^{out})$

Repeated Motifs

- Normal cell: preservers the dimensionality of the input.
- Reduction cell: reduces the spatial dimension.

Search Strategy

Search Strategy

- Random search
- Reinforcement learning
- Gradient-based optimization
- Bayesian optimization
- Evolutionary methods

► For each node in the DAG, determine what decisions must be made.

- ► For each node in the DAG, determine what decisions must be made.
 - Choose a node as input and a corresponding operation to apply to generate the output of the node.

- ► For each node in the DAG, determine what decisions must be made.
 - Choose a node as input and a corresponding operation to apply to generate the output of the node.
 - E.g., node i can take the outputs of nodes 0 to node i 1 as input.

- ► For each node in the DAG, determine what decisions must be made.
 - Choose a node as input and a corresponding operation to apply to generate the output of the node.
 - E.g., node i can take the outputs of nodes 0 to node i 1 as input.
 - E.g., choose an operation, e.g., tanh, relu, sigmoid to apply to the output of node i.

- ► For each node in the DAG, determine what decisions must be made.
 - Choose a node as input and a corresponding operation to apply to generate the output of the node.
 - E.g., node i can take the outputs of nodes 0 to node i 1 as input.
 - E.g., choose an operation, e.g., tanh, relu, sigmoid to apply to the output of node i.
- Sample uniformly from the set of possible choices for each decision that needs to be made.

- ► For each node in the DAG, determine what decisions must be made.
 - Choose a node as input and a corresponding operation to apply to generate the output of the node.
 - E.g., node i can take the outputs of nodes 0 to node i 1 as input.
 - E.g., choose an operation, e.g., tanh, relu, sigmoid to apply to the output of node i.
- Sample uniformly from the set of possible choices for each decision that needs to be made.
- Moving from node to node.

► Evolves a population of models, i.e., a set of (possibly trained) networks.

- Evolves a population of models, i.e., a set of (possibly trained) networks.
- In every evolution step, at least one model from the population is sampled and serves as a parent to generate offsprings by applying mutations to it.

- ► Evolves a population of models, i.e., a set of (possibly trained) networks.
- In every evolution step, at least one model from the population is sampled and serves as a parent to generate offsprings by applying mutations to it.
 - E.g., adding or removing a layer, altering the hyperparameters of a layer, adding skip connections, etc.

- Evolves a population of models, i.e., a set of (possibly trained) networks.
- In every evolution step, at least one model from the population is sampled and serves as a parent to generate offsprings by applying mutations to it.
 - E.g., adding or removing a layer, altering the hyperparameters of a layer, adding skip connections, etc.
- ► After training the offsprings, their fitness (e.g., performance on a validation set) is evaluated and they are added to the population.

- Evolves a population of models, i.e., a set of (possibly trained) networks.
- In every evolution step, at least one model from the population is sampled and serves as a parent to generate offsprings by applying mutations to it.
 - E.g., adding or removing a layer, altering the hyperparameters of a layer, adding skip connections, etc.
- ► After training the offsprings, their fitness (e.g., performance on a validation set) is evaluated and they are added to the population.
- Evolutionary methods differ in how they sample parents, update populations, and generate offsprings.

• Action: the generation of a neural architecture.

- Action: the generation of a neural architecture.
- Action space: the search space.

- Action: the generation of a neural architecture.
- Action space: the search space.
- Reward: based on an estimate of the performance of the trained architecture on unseen data.

- Action: the generation of a neural architecture.
- Action space: the search space.
- Reward: based on an estimate of the performance of the trained architecture on unseen data.
- Policy: different approaches.

Gradient-based Optimization

► The previous methods search over a discrete set of candidate architectures.

[Liu et al., DARTS: Differentiable Architecture Search, 2019]

Gradient-based Optimization

- ► The previous methods search over a discrete set of candidate architectures.
- ► Here, it relaxes the search space to be continuous, so that the architecture can be optimized with respect to its validation set performance by gradient descent.

[Liu et al., DARTS: Differentiable Architecture Search, 2019]

Gradient-based Optimization

- ► The previous methods search over a discrete set of candidate architectures.
- ► Here, it relaxes the search space to be continuous, so that the architecture can be optimized with respect to its validation set performance by gradient descent.
- We relax the categorical choice of a particular operation to a softmax over all possible operations.

[Liu et al., DARTS: Differentiable Architecture Search, 2019]

• Find the architecture $a \in A$ that maximizes f(a).

- Find the architecture $a \in A$ that maximizes f(a).
- Choose several architectures from A at random and evaluating f(a) for each of them.

- Find the architecture $a \in A$ that maximizes f(a).
- Choose several architectures from A at random and evaluating f(a) for each of them.
- ▶ Based on these results, iteratively choose new architectures to evaluate.

- Find the architecture $a \in A$ that maximizes f(a).
- Choose several architectures from A at random and evaluating f(a) for each of them.
- Based on these results, iteratively choose new architectures to evaluate.
- The full algorithm: T rounds of choosing an architecture a_i and computing $f(a_i)$.

- Find the architecture $a \in A$ that maximizes f(a).
- Choose several architectures from A at random and evaluating f(a) for each of them.
- ▶ Based on these results, iteratively choose new architectures to evaluate.
- ► The full algorithm: T rounds of choosing an architecture a_i and computing f(a_i).
- The output is the architecture a* with the largest value of f(a*) among all those that were tried in the previous rounds.

• Choose the next architecture in round i + 1, given $f(a_1), \dots, f(a_i)$.

- Choose the next architecture in round i + 1, given $f(a_1), \dots, f(a_i)$.
- Assume $f : A \rightarrow [0, 1]$ follows a Gaussian Process (GP).

- Choose the next architecture in round i + 1, given $f(a_1), \dots, f(a_i)$.
- ▶ Assume $f : A \rightarrow [0, 1]$ follows a Gaussian Process (GP).
- ► Makes an assumption about the distribution f(A).

- Choose the next architecture in round i + 1, given $f(a_1), \cdots, f(a_i)$.
- Assume $f : A \rightarrow [0, 1]$ follows a Gaussian Process (GP).
- Makes an assumption about the distribution f(A).
- ► The assumptions about the mean and variance of f(A) are constantly being updated as the algorithm gathers more data in the form of f(a₁), · · · , f(a_i).

- Choose the next architecture in round i + 1, given $f(a_1), \cdots, f(a_i)$.
- Assume $f : A \rightarrow [0, 1]$ follows a Gaussian Process (GP).
- Makes an assumption about the distribution f(A).
- ► The assumptions about the mean and variance of f(A) are constantly being updated as the algorithm gathers more data in the form of f(a₁), · · · , f(a_i).
- Chooses the architecture with the greatest chance of giving a large improvement.

- Choose the next architecture in round i + 1, given $f(a_1), \cdots, f(a_i)$.
- Assume $f : A \rightarrow [0, 1]$ follows a Gaussian Process (GP).
- Makes an assumption about the distribution f(A).
- ► The assumptions about the mean and variance of f(A) are constantly being updated as the algorithm gathers more data in the form of f(a₁), · · · , f(a_i).
- ► Chooses the architecture with the greatest chance of giving a large improvement.
- ► The algorithm chooses $a_{i+1} = \arg \max_{a \in A} \max(0, E[f(a) f^*]) = \arg \max_{a \in A} E[f(a)]$.

- Choose the next architecture in round i + 1, given $f(a_1), \cdots, f(a_i)$.
- Assume $f : A \rightarrow [0, 1]$ follows a Gaussian Process (GP).
- Makes an assumption about the distribution f(A).
- ► The assumptions about the mean and variance of f(A) are constantly being updated as the algorithm gathers more data in the form of f(a₁), · · · , f(a_i).
- ► Chooses the architecture with the greatest chance of giving a large improvement.
- ► The algorithm chooses $a_{i+1} = \arg \max_{a \in A} \max(0, E[f(a) f^*]) = \arg \max_{a \in A} E[f(a)]$.
- **f*** is the best accuracy observed so far.

The top graph: three evaluations of f (blue circles), an estimate of f (solid red line), and confidence intervals (dotted red lines).

[https://medium.com/abacus-ai/an-introduction-to-bayesian-optimization-for-neural-architecture-search-d324830ec781]

- The top graph: three evaluations of f (blue circles), an estimate of f (solid red line), and confidence intervals (dotted red lines).
- ► The bottom graph: the expected improvement value for each architecture. The architecture with the largest expected improvement is chosen (blue x).

[https://medium.com/abacus-ai/an-introduction-to-bayesian-optimization-for-neural-architecture-search-d324830ec781]

Performance Estimation

The search strategies need to estimate the performance of a given architecture A they consider.

Performance Estimation

- ► The search strategies need to estimate the performance of a given architecture A they consider.
- ► The simplest way of doing this is to train A on training data and evaluate its performance on validation data.

Performance Estimation

- ► The search strategies need to estimate the performance of a given architecture A they consider.
- ► The simplest way of doing this is to train A on training data and evaluate its performance on validation data.
- However, training each architecture to be evaluated from scratch frequently yields computational demands in the order of thousands of GPU days for NAS.

Reduce the Computational Burden

- Low-fidelity approximation
- Learning curve extrapolation
- One-shot architecture

Meta-learning or learning to learn

- Meta-learning or learning to learn
- Systematically observe how different ML approaches perform on a wide range of learning tasks.

- Meta-learning or learning to learn
- Systematically observe how different ML approaches perform on a wide range of learning tasks.
- Then, learning from this experience (meta-data), to learn new tasks much faster than otherwise possible.

Learning from task properties

Learning from model evaluation

Learning from prior models

- Learning from task properties
 - Using meta-features
 - Building meta-models
- Learning from model evaluation

Learning from prior models

Learning from task properties

- Using meta-features
- Building meta-models
- Learning from model evaluation
 - Relative landmarks
 - Surrogate model
 - Warm-started multi-task learning
- Learning from prior models

Learning from task properties

- Using meta-features
- Building meta-models
- Learning from model evaluation
 - Relative landmarks
 - Surrogate model
 - Warm-started multi-task learning
- Learning from prior models
 - Transfer learning
 - Few-shot learning

Uses meta-features:

- Uses meta-features:
 - Number of instances

- ► Uses meta-features:
 - Number of instances
 - Number of features

- Uses meta-features:
 - Number of instances
 - Number of features
 - Statistical features (e.g., skewness, correlation, average, etc.)

- Uses meta-features:
 - Number of instances
 - Number of features
 - Statistical features (e.g., skewness, correlation, average, etc.)
 - Information theoretic features (e.g., the entropy of class labels)

- Uses meta-features:
 - Number of instances
 - Number of features
 - Statistical features (e.g., skewness, correlation, average, etc.)
 - Information theoretic features (e.g., the entropy of class labels)
- ► The selection of meta-features is highly dependent on the application.

• Each prior task t_j is characterized by a meta-feature vector $m(t_j)$.

- Each prior task t_j is characterized by a meta-feature vector $m(t_j)$.
- Information from a prior task t_j can be transferred to a new task t_{new} based on their similarity.

- Each prior task t_j is characterized by a meta-feature vector $m(t_j)$.
- Information from a prior task t_j can be transferred to a new task t_{new} based on their similarity.
- ► The similarity between two tasks is the distance between the feature vectors.

► Building meta-model.

Learning from Task Properties (3/3)

- Building meta-model.
- Building a meta-model L to learn the relationships between meta-features of prior tasks t_j.

Learning from Task Properties (3/3)

- Building meta-model.
- Building a meta-model L to learn the relationships between meta-features of prior tasks t_j.
- ▶ For a new task t_{new} , the meta-model L recommends the best configurations.

▶ $t_j \in T$: t_j is a ML task and T is the set of all prior ML tasks.

- ▶ $t_j \in T$: t_j is a ML task and T is the set of all prior ML tasks.
- ▶ 9: the configuration space (hyper-parameter setting, pipeline components, etc.).

- ▶ $t_j \in T$: t_j is a ML task and T is the set of all prior ML tasks.
- ► Θ: the configuration space (hyper-parameter setting, pipeline components, etc.).
- ▶ **P**: the set of all prior evaluations $P_{i,j}$ of configuration θ_i on a prior task t_j .

- ▶ $t_j \in T$: t_j is a ML task and T is the set of all prior ML tasks.
- ► 0: the configuration space (hyper-parameter setting, pipeline components, etc.).
- ▶ **P**: the set of all prior evaluations $P_{i,j}$ of configuration θ_i on a prior task t_j .
- ► Learn a meta-learner L that is trained on meta-data P∪P_{new} to predict recommended configuration Θ_{new} for a new task t_{new}.

- ▶ $t_j \in T$: t_j is a ML task and T is the set of all prior ML tasks.
- ► 0: the configuration space (hyper-parameter setting, pipeline components, etc.).
- ▶ **P**: the set of all prior evaluations $P_{i,j}$ of configuration θ_i on a prior task t_j .
- ► Learn a meta-learner L that is trained on meta-data P∪P_{new} to predict recommended configuration Θ_{new} for a new task t_{new}.
- Three different ways:
 - 1. Relative landmarks
 - 2. Surrogate models
 - 3. Warm-started multitask learning

Relative landmarks measure the performance difference between two model configurations on the same task

- Relative landmarks measure the performance difference between two model configurations on the same task
- Two tasks t_{new} and t_j are considered similar, if their relative landmarks performance of the considered configurations are also similar.

- Relative landmarks measure the performance difference between two model configurations on the same task
- Two tasks t_{new} and t_j are considered similar, if their relative landmarks performance of the considered configurations are also similar.
- Once similar tasks have been identified, a meta-learner can be trained on the evaluations P_{i,j} and P_{i,new} to recommend new configurations for task t_{new}.

▶ Surrogate models get trained on all prior evaluations **P** of all prior tasks t_j.

- ▶ Surrogate models get trained on all prior evaluations **P** of all prior tasks t_j.
- ► For a particular task t_j, if the surrogate model can predict accurate configuration for a new task t_{new}, then tasks t_{new} and t_j are considered similar.

► Using transfer learning that utilizes pretrained models on prior tasks t_j to be adapted on a new task t_{new}, where tasks t_j and t_{new} are similar.

- Using transfer learning that utilizes pretrained models on prior tasks t_j to be adapted on a new task t_{new}, where tasks t_j and t_{new} are similar.
- E.g., NN architecture and parameters are trained on prior task t_j that can be used as an initialization for model adaptation on a new task t_{new}.

- Using transfer learning that utilizes pretrained models on prior tasks t_j to be adapted on a new task t_{new}, where tasks t_j and t_{new} are similar.
- ► E.g., NN architecture and parameters are trained on prior task t_j that can be used as an initialization for model adaptation on a new task t_{new}.
- ► Then, the new model can be fine-tuned.

- ► Using transfer learning that utilizes pretrained models on prior tasks t_j to be adapted on a new task t_{new}, where tasks t_j and t_{new} are similar.
- E.g., NN architecture and parameters are trained on prior task t_j that can be used as an initialization for model adaptation on a new task t_{new}.
- ► Then, the new model can be fine-tuned.
- Transfer learning usually works well when the new task to be learned is similar to the prior tasks.

BOHB: Robust and Efficient Hyperparameter Optimization at Scale

BOHB: Bayesian Optimization and Hyperband

- ▶ Bayesian optimization (BO): for choosing the configuration to evaluate
- ► Hyperband (HB): for deciding how to allocate budgets

► BO advantage: much improved final performance

Hyperband vs. Random Search

▶ HB advantage: much improved anytime performance

▶ Best of both worlds: strong anytime and final performance

► Relies on HB to determine how many configurations to evaluate with which budget.

- ▶ Relies on HB to determine how many configurations to evaluate with which budget.
- Replaces the random selection of configurations at the beginning of each HB iteration by a BO model-based search.

- ▶ Relies on HB to determine how many configurations to evaluate with which budget.
- Replaces the random selection of configurations at the beginning of each HB iteration by a BO model-based search.
- Once the desired number of configurations for the iteration is reached, the SHA procedure is carried out using these configurations.

A System for Massively Parallel Hyperparameter Tuning

 SHA allocates a small budget to each configuration, evaluate all configurations and keep the top ¹/_ρ.

- SHA allocates a small budget to each configuration, evaluate all configurations and keep the top ¹/_ρ.
- It then increases the budget per configuration by a factor of ρ .

- ► SHA allocates a small budget to each configuration, evaluate all configurations and keep the top $\frac{1}{\rho}$.
- It then increases the budget per configuration by a factor of ρ .
- ► Repeats until the maximum per-configuration budget of R is reached.

- SHA allocates a small budget to each configuration, evaluate all configurations and keep the top ¹/_ρ.
- It then increases the budget per configuration by a factor of ρ .
- ► Repeats until the maximum per-configuration budget of R is reached.
- ► SHA requires the number of configurations, a min and max resource, a reduction factor, and a minimum early-stopping rate.

Asynchronous SHA (ASHA)

 ASHA is a technique to parallelize SHA, leveraging asynchrony to mitigate stragglers and maximize parallelism.

- ASHA is a technique to parallelize SHA, leveraging asynchrony to mitigate stragglers and maximize parallelism.
- ASHA promotes configurations to the next rung whenever possible, instead of waiting for a rung to complete before proceeding to the next rung.

- ASHA is a technique to parallelize SHA, leveraging asynchrony to mitigate stragglers and maximize parallelism.
- ASHA promotes configurations to the next rung whenever possible, instead of waiting for a rung to complete before proceeding to the next rung.
- If no promotions are possible, ASHA simply adds a configuration to the base rung, so that more configurations can be promoted to the upper rungs.

- ASHA is a technique to parallelize SHA, leveraging asynchrony to mitigate stragglers and maximize parallelism.
- ASHA promotes configurations to the next rung whenever possible, instead of waiting for a rung to complete before proceeding to the next rung.
- If no promotions are possible, ASHA simply adds a configuration to the base rung, so that more configurations can be promoted to the upper rungs.
- Given its asynchronous nature it does not require the user to pre-specify the number of configurations to evaluate, but it otherwise requires the same inputs as SHA.

DARTS: Differentiable Architecture Search

Differentiable ARchiTecture Search (DARTS)

- Instead of searching over a discrete set of candidate architectures, we relax the search space to be continuous.
- The architecture can be optimized with respect to its validation set performance by gradient descent.

► It searches for a computation cell as the building block of the final architecture.

- ► It searches for a computation cell as the building block of the final architecture.
- ► A cell is a DAG consisting of an ordered sequence of N nodes.

- ► It searches for a computation cell as the building block of the final architecture.
- ► A cell is a DAG consisting of an ordered sequence of N nodes.
- ► Each node x⁽ⁱ⁾ is a latent representation (e.g. a feature map in CNNs).

- ► It searches for a computation cell as the building block of the final architecture.
- ► A cell is a DAG consisting of an ordered sequence of N nodes.
- ► Each node x⁽ⁱ⁾ is a latent representation (e.g. a feature map in CNNs).
- Each directed edge (i, j) is associated with some operation o^(i,j) that transforms x⁽ⁱ⁾.

- ► It searches for a computation cell as the building block of the final architecture.
- ► A cell is a DAG consisting of an ordered sequence of N nodes.
- ► Each node x⁽ⁱ⁾ is a latent representation (e.g. a feature map in CNNs).
- Each directed edge (i, j) is associated with some operation o^(i,j) that transforms x⁽ⁱ⁾.
- Each intermediate node is computed based on all of its predecessors: $x^{(j)} = \sum_{i < j} o^{(i,j)}(x^i)$

► Let O be a set of candidate operations, where each operation represents some function o to be applied to x⁽ⁱ⁾.

- ► Let O be a set of candidate operations, where each operation represents some function o to be applied to x⁽ⁱ⁾.
- ► To make the search space continuous, it relaxes the categorical choice of a particular operation to a softmax over all possible operations: $\overline{o}^{(i,j)}(x) = \sum_{o \in \mathcal{O}} \frac{\exp(\alpha_o^{(i,j)})}{\sum_{o' \in \mathcal{O}} \exp(\alpha_o^{(i,j)})} o(x)$

- ► Let O be a set of candidate operations, where each operation represents some function o to be applied to x⁽ⁱ⁾.
- To make the search space continuous, it relaxes the categorical choice of a particular operation to a softmax over all possible operations:

 0^(i,j)(x) = ∑_{o∈O} exp(α^(i,j)_{o'∈O} exp(α^(i,j)_{o'}) o(x)
- The operation mixing weights for a pair of nodes (i, j) are parameterized by a vector α^(i,j) of dimension |O|.

- ► Let O be a set of candidate operations, where each operation represents some function o to be applied to x⁽ⁱ⁾.
- To make the search space continuous, it relaxes the categorical choice of a particular operation to a softmax over all possible operations:

 0^(i,j)(x) = ∑_{o∈O} (exp(α^(i,j)_{o'∈O})/(∑_{o'∈O}) (x)
- The operation mixing weights for a pair of nodes (i, j) are parameterized by a vector α^(i,j) of dimension |O|.
- At the end of search, a discrete architecture can be obtained by replacing each mixed operation o
 ^(i,j) with the most likely operation, i.e., o^(i,j) = arg max_{o∈O} α^(i,j)_o.

Summary

- Hyperparameter optimization
 - Black-box optimization
 - Multi-fidelity optimization
- Nural architecture search
 - Search space
 - Search strategy
 - Performance estimation
- Meta-learning
 - Learning from task properties
 - Learning from prior model evaluation
 - · Learning from prior models

- Elshawi et al., Automated Machine Learning: State-of-The-Art and Open Challenges, 2019
- Falkner et al., BOHB: Robust and Efficient Hyperparameter Optimization at Scale, 2018
- Li et al., A System for Massively Parallel Hyperparameter Tuning, 2020
- Liu et al., DARTS: Differentable Architecture Search, 2019

Questions?