
Automated Machine Learning (AutoML)

Amir H. Payberah
payberah@kth.se

2020-11-23



The Course Web Page

https://fid3024.github.io

1 / 77



The Machine Learning Process

I Building an ML model is an iterative, complex, and time-consuming process.

I It can take a lot of trial and error.

[Elshawi et al., Automated Machine Learning: State-of-The-Art and Open Challenges, 2019]
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Automated vs. Manual Machine Learning

I AutoML: build models in a data-driven, intelligent, and purposeful way.

[Joaquin Vanschoren, Automatic Machine Learning - A Tutorial]
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AutoML Subproblems - Neural Architecture Search

I Represent and search all pipelines or neural nets, e.g., neural layers, interconnections,
etc.

[Joaquin Vanschoren, Automatic Machine Learning - A Tutorial]
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AutoML Subproblems - Hyperparameter Optimization

I Which hyperparameters are important? How to optimize them?

[Joaquin Vanschoren, Automatic Machine Learning - A Tutorial]
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AutoML Subproblems - Meta-learning

I How can we transfer experience from previous tasks?

I Don’t start from scratch (search space is too large).

[Joaquin Vanschoren, Automatic Machine Learning - A Tutorial]
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Hyper-Parameter Optimization (HPO)
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AutoML Definition

I A denotes an ML algorithms with m hyperparameters.

I {A1, A2, · · · , An} is a set of ML algorithms.

I Λj is the domain of jth hyperparameter.

I Λ = Λ1 × Λ2 × · · · × Λm is the overall hyperparameter configuration space.

I θ ∈ Λ is a vector of hyperparameters.

I J(θ,Xtrain,Xvalid) is the loss of the ML model created by θ, trained on Xtrain, and
validated on Xvalid.

I Find the configuration that minimizes the expected loss on a dataset Xtrain:
θ∗ = arg minθ∈Λ E(Xtrain,Xvalid)∼XJ(θ,Xtrain,Xvalid)
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Types of Hyperparameters

I Continuous
• E.g., learning rate

I Integer
• E.g., number of hidden units

I Categorical
• E.g., choose of operator (Convolution, MaxPooling, DropOut, etc.)
• E.g., activation function (ReLU, Leaky ReLU, tanh, etc.)

I Conditional
• E.g., convolution kernel size, if convolution layer is selected
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Hyper-Parameter Optimization

I Black-box optimization

• Grid search
• Random search
• Population-based search
• Bayesian optimization

I Multi-fidelity optimization

• Modeling learning curve
• Bandit based
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Black-box Optimization - Grid and Random Search

[Hutter et al., Automated Machine Learning, 2019]
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Black-box Optimization - Population-based Search

I They maintain a population, i.e., a set of configurations.

I Improve this population to obtain a new generation of better configurations.

I Achieve this by applying:
• Local perturbations (so-called mutations)
• Combinations of different members (so-called crossover)

I E.g., genetic algorithms, evolutionary algorithms, particle swarm optimization
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Black-box Optimization - Bayesian Optimization (1/3)

I Start with a few (random) hyperparameter configurations.

I Fit a surrogate model to predict other configurations.

I An acquisition function drives the proposition of new points to test, in an exploration
and exploitation trade-off.

I Sample for the best configuration under that function.

[Hutter et al., Automated Machine Learning, 2019]
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Black-box Optimization - Bayesian Optimization (2/3)

[Hutter et al., Automated Machine Learning, 2019]
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Black-box Optimization - Bayesian Optimization (3/3)

[Hutter et al., Automated Machine Learning, 2019]
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Hyper-Parameter Optimization

I Black-box optimization
• Grid search
• Random search
• Population-based search
• Bayesian optimization

I Multi-fidelity optimization
• Modeling learning curve
• Bandit based
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Multi-fidelity Optimization

I Massive dataset sizes and complex models make blackbox performance evaluation
expensive.

I Probe a hyperparameter configuration on a small subset.

I Multi-fidelity methods use low fidelity approximations of the actual loss function to
minimize.

I These approximations introduce a tradeoff between optimization performance and
runtime.
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Multi-fidelity Optimization - Modeling Learning Curves

I Learning curve extrapolation is used in predicting early termination for a particular
configuration.

I Models learning curves during hyper-parameter optimization.

I Decides whether to allocate more resources or to stop the training procedure for a
particular configuration.

I The learning process is terminated if the performance of the predicted configuration
is less than the performance of the best model trained so far in the optimization
process.
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Multi-fidelity Optimization - Bandit-Based

I Successive halving algorithm (SHA)

I HyperBand
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Multi-fidelity Optimization - SHA (1/4)

I Train on small subsets, infer which regions may be interesting to evaluate in more
depth.

I Randomly sample candidates and evaluate on a small data sample.

I E.g., retrain the 50% best candidates on twice the data.

[Hutter et al., Automated Machine Learning, 2019]
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Multi-fidelity Optimization - SHA (2/4)

I Successive halving for eight algorithms/configurations.

I After evaluating all algorithms on 1/8 of the total budget, half of them are dropped
and the budget given to the remaining algorithms is doubled.

[Hutter et al., Automated Machine Learning, 2019]
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Multi-fidelity Optimization - SHA (3/4)
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Multi-fidelity Optimization - SHA (4/4)

I Successive halving suffers from the budget-vs-number of configurations trade off.

I Given a total budget, the user has to decide beforehand whether:

• to try many configurations and only assign a small budget to each, or
• to try only a few and assign them a larger budget.

I Assigning too small a budget can result in prematurely terminating good configura-
tions.

I Assigning too large a budget can result in running poor configurations too long and
thereby wasting resources.
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Multi-fidelity Optimization - HyperBand (1/2)

I HyperBand combats SHA problem when selecting from randomly sampled configu-
rations.

I It divides the total budget into several combinations of number of configurations vs.
budget for each.

I Then it calls SHA on each set of random configurations.
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Multi-fidelity Optimization - HyperBand (2/2)

I The inner loop invokes SHA for fixed values of n and r.

I The outer loop iterates over different values of n and r.
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Neural Architecture Search (NAS)
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Neural Architecture Search

I The process of automating architecture engineering.

I Search space: which architectures can be represented in principle.

I Search strategy: how to explore the search space.

I Performance estimation: to perform a standard training and validation of the archi-
tecture on data.

[Hutter et al., Automated Machine Learning, 2019]
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Search Space
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Search Space

I Which neural architectures a NAS approach might discover.

I Chain-structured neural network

I Multi-branch networks

I Repeated motifs
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Chain-Structured Neural Network

I A sequence of n layers.

I The i’th layer Li receives its input from layer i− 1 and its output
serves as the input for layer i + 1.

I Parameters of the search space:

• The (maximum) number of layers n.

• The type of operation every layer can execute, e.g., pooling, conv.

• Hyperparameters associated with the operation, e.g., number of filters,
kernel size and strides for a convolutional layer.
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Multi-Branch Networks

I The input of layer i: a function gi(Louti−1, · · · , Lout0 ) of previous layer outputs.

I Special cases:

• The chain-structured networks: gi(Louti−1, · · · , Lout0 ) = Louti−1

• Residual networks, where previous layer outputs are summed:
gi(Louti−1, · · · , Lout0 ) = Louti−1 + Louti , j < i

• DenseNets, where previous layer outputs are out concatenated:
gi(Louti−1, · · · , Lout0 ) = concat(Louti−1, · · · , Lout0 )
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Repeated Motifs

I Normal cell: preservers the
dimensionality of the input.

I Reduction cell: reduces the
spatial dimension.
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Search Strategy
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Search Strategy

I Random search

I Reinforcement learning

I Gradient-based optimization

I Bayesian optimization

I Evolutionary methods
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Random Search

I For each node in the DAG, determine what decisions must be made.

• Choose a node as input and a corresponding operation to apply to generate the
output of the node.

• E.g., node i can take the outputs of nodes 0 to node i− 1 as input.
• E.g., choose an operation, e.g., tanh, relu, sigmoid to apply to the output of node i.

I Sample uniformly from the set of possible choices for each decision that needs to be
made.

I Moving from node to node.

[Li et al., Random Search and Reproducibility for Neural Architecture Search, 2020]
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Evolutionary Methods

I Evolves a population of models, i.e., a set of (possibly trained) networks.

I In every evolution step, at least one model from the population is sampled and serves
as a parent to generate offsprings by applying mutations to it.

• E.g., adding or removing a layer, altering the hyperparameters of a layer, adding skip
connections, etc.

I After training the offsprings, their fitness (e.g., performance on a validation set) is
evaluated and they are added to the population.

I Evolutionary methods differ in how they sample parents, update populations, and
generate offsprings.
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Reinforcement Learning

I Action: the generation of a neural architecture.

I Action space: the search space.

I Reward: based on an estimate of the performance of the trained architecture on
unseen data.

I Policy: different approaches.
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Gradient-based Optimization

I The previous methods search over a discrete set of candidate architectures.

I Here, it relaxes the search space to be continuous, so that the architecture can be
optimized with respect to its validation set performance by gradient descent.

I We relax the categorical choice of a particular operation to a softmax over all possible
operations.

[Liu et al., DARTS: Differentiable Architecture Search, 2019]
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Bayesian Optimization (1/3)

I Find the architecture a ∈ A that maximizes f(a).

I Choose several architectures from A at random and evaluating f(a) for each of them.

I Based on these results, iteratively choose new architectures to evaluate.

I The full algorithm: T rounds of choosing an architecture ai and computing f(ai).

I The output is the architecture a∗ with the largest value of f(a∗) among all those
that were tried in the previous rounds.
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Bayesian Optimization (2/3)

I Choose the next architecture in round i + 1, given f(a1), · · · , f(ai).

I Assume f : A→ [0, 1] follows a Gaussian Process (GP).

I Makes an assumption about the distribution f(A).

I The assumptions about the mean and variance of f(A) are constantly being updated
as the algorithm gathers more data in the form of f(a1), · · · , f(ai).

I Chooses the architecture with the greatest chance of giving a large improvement.

I The algorithm chooses ai+1 = arg maxa∈A max(0, E[f(a)−f∗]) = arg maxa∈A E[f(a)].

I f∗ is the best accuracy observed so far.
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Bayesian Optimization (3/3)

I The top graph: three evaluations of f (blue circles), an estimate of f (solid red line),
and confidence intervals (dotted red lines).

I The bottom graph: the expected improvement value for each architecture. The
architecture with the largest expected improvement is chosen (blue x).

[https://medium.com/abacus-ai/an-introduction-to-bayesian-optimization-for-neural-architecture-search-d324830ec781]
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Performance Estimation
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Performance Estimation

I The search strategies need to estimate the performance of a given architecture A

they consider.

I The simplest way of doing this is to train A on training data and evaluate its perfor-
mance on validation data.

I However, training each architecture to be evaluated from scratch frequently yields
computational demands in the order of thousands of GPU days for NAS.
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Reduce the Computational Burden

I Low-fidelity approximation

I Learning curve extrapolation

I One-shot architecture
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Meta-Learning
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Meta-Learning

I Meta-learning or learning to learn

I Systematically observe how different ML approaches perform on a wide range of
learning tasks.

I Then, learning from this experience (meta-data), to learn new tasks much faster than
otherwise possible.
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Meta-Learning

I Learning from task properties

• Using meta-features
• Building meta-models

I Learning from model evaluation

• Relative landmarks
• Surrogate model
• Warm-started multi-task learning

I Learning from prior models

• Transfer learning
• Few-shot learning
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Learning from Task Properties
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Learning from Task Properties (1/3)

I Uses meta-features:

• Number of instances
• Number of features
• Statistical features (e.g., skewness, correlation, average, etc.)
• Information theoretic features (e.g., the entropy of class labels)

I The selection of meta-features is highly dependent on the application.
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Learning from Task Properties (2/3)

I Each prior task tj is characterized by a meta-feature vector m(tj).

I Information from a prior task tj can be transferred to a new task tnew based on their
similarity.

I The similarity between two tasks is the distance between the feature vectors.
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Learning from Task Properties (3/3)

I Building meta-model.

I Building a meta-model L to learn the relationships between meta-features of prior
tasks tj.

I For a new task tnew, the meta-model L recommends the best configurations.
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Learning from Prior Model Evaluation
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Learning from Prior Model Evaluation (1/3)

I tj ∈ T: tj is a ML task and T is the set of all prior ML tasks.

I Θ: the configuration space (hyper-parameter setting, pipeline components, etc.).

I P: the set of all prior evaluations Pi,j of configuration θi on a prior task tj.

I Learn a meta-learner L that is trained on meta-data P∪Pnew to predict recommended
configuration Θnew for a new task tnew.

I Three different ways:

1. Relative landmarks
2. Surrogate models
3. Warm-started multitask learning
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Learning from Prior Model Evaluation (2/3)

I Relative landmarks measure the performance difference between two model configu-
rations on the same task

I Two tasks tnew and tj are considered similar, if their relative landmarks performance
of the considered configurations are also similar.

I Once similar tasks have been identified, a meta-learner can be trained on the evalu-
ations Pi,j and Pi,new to recommend new configurations for task tnew.
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Learning from Prior Model Evaluation (3/3)

I Surrogate models get trained on all prior evaluations P of all prior tasks tj.

I For a particular task tj, if the surrogate model can predict accurate configuration
for a new task tnew, then tasks tnew and tj are considered similar.
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Learning from Prior Models
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Learning from Prior Models

I Using transfer learning that utilizes pretrained models on prior tasks tj to be adapted
on a new task tnew, where tasks tj and tnew are similar.

I E.g., NN architecture and parameters are trained on prior task tj that can be used
as an initialization for model adaptation on a new task tnew.

I Then, the new model can be fine-tuned.

I Transfer learning usually works well when the new task to be learned is similar to the
prior tasks.
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BOHB: Robust and Efficient Hyperparameter
Optimization at Scale
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BOHB: Bayesian Optimization and Hyperband

I Bayesian optimization (BO): for choosing the configuration to evaluate

I Hyperband (HB): for deciding how to allocate budgets
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Bayesian Optimization vs. Random Search

I BO advantage: much improved final performance
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Hyperband vs. Random Search

I HB advantage: much improved anytime performance
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Combining Bayesian Optimization and Hyperband

I Best of both worlds: strong anytime and final performance
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HBOB Algorithm

I Relies on HB to determine how many configurations to evaluate with which budget.

I Replaces the random selection of configurations at the beginning of each HB iteration
by a BO model-based search.

I Once the desired number of configurations for the iteration is reached, the SHA
procedure is carried out using these configurations.
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A System for Massively Parallel
Hyperparameter Tuning
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SHA

I SHA allocates a small budget to each configuration, evaluate all configurations and
keep the top 1

ρ .

I It then increases the budget per configuration by a factor of ρ.

I Repeats until the maximum per-configuration budget of R is reached.

I SHA requires the number of configurations, a min and max resource, a reduction
factor, and a minimum early-stopping rate.

68 / 77



SHA

I SHA allocates a small budget to each configuration, evaluate all configurations and
keep the top 1

ρ .

I It then increases the budget per configuration by a factor of ρ.

I Repeats until the maximum per-configuration budget of R is reached.

I SHA requires the number of configurations, a min and max resource, a reduction
factor, and a minimum early-stopping rate.

68 / 77



SHA

I SHA allocates a small budget to each configuration, evaluate all configurations and
keep the top 1

ρ .

I It then increases the budget per configuration by a factor of ρ.

I Repeats until the maximum per-configuration budget of R is reached.

I SHA requires the number of configurations, a min and max resource, a reduction
factor, and a minimum early-stopping rate.

68 / 77



SHA

I SHA allocates a small budget to each configuration, evaluate all configurations and
keep the top 1

ρ .

I It then increases the budget per configuration by a factor of ρ.

I Repeats until the maximum per-configuration budget of R is reached.

I SHA requires the number of configurations, a min and max resource, a reduction
factor, and a minimum early-stopping rate.

68 / 77



Asynchronous SHA (ASHA)

I ASHA is a technique to parallelize SHA, leveraging asynchrony to mitigate stragglers
and maximize parallelism.

I ASHA promotes configurations to the next rung whenever possible, instead of waiting
for a rung to complete before proceeding to the next rung.

I If no promotions are possible, ASHA simply adds a configuration to the base rung,
so that more configurations can be promoted to the upper rungs.

I Given its asynchronous nature it does not require the user to pre-specify the number
of configurations to evaluate, but it otherwise requires the same inputs as SHA.

69 / 77



Asynchronous SHA (ASHA)

I ASHA is a technique to parallelize SHA, leveraging asynchrony to mitigate stragglers
and maximize parallelism.

I ASHA promotes configurations to the next rung whenever possible, instead of waiting
for a rung to complete before proceeding to the next rung.

I If no promotions are possible, ASHA simply adds a configuration to the base rung,
so that more configurations can be promoted to the upper rungs.

I Given its asynchronous nature it does not require the user to pre-specify the number
of configurations to evaluate, but it otherwise requires the same inputs as SHA.

69 / 77



Asynchronous SHA (ASHA)

I ASHA is a technique to parallelize SHA, leveraging asynchrony to mitigate stragglers
and maximize parallelism.

I ASHA promotes configurations to the next rung whenever possible, instead of waiting
for a rung to complete before proceeding to the next rung.

I If no promotions are possible, ASHA simply adds a configuration to the base rung,
so that more configurations can be promoted to the upper rungs.

I Given its asynchronous nature it does not require the user to pre-specify the number
of configurations to evaluate, but it otherwise requires the same inputs as SHA.

69 / 77



Asynchronous SHA (ASHA)

I ASHA is a technique to parallelize SHA, leveraging asynchrony to mitigate stragglers
and maximize parallelism.

I ASHA promotes configurations to the next rung whenever possible, instead of waiting
for a rung to complete before proceeding to the next rung.

I If no promotions are possible, ASHA simply adds a configuration to the base rung,
so that more configurations can be promoted to the upper rungs.

I Given its asynchronous nature it does not require the user to pre-specify the number
of configurations to evaluate, but it otherwise requires the same inputs as SHA.

69 / 77



DARTS: Differentiable Architecture Search
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Differentiable ARchiTecture Search (DARTS)

I Instead of searching over a discrete set of candidate architectures, we relax the search
space to be continuous.

I The architecture can be optimized with respect to its validation set performance by
gradient descent.
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Search Space

I It searches for a computation cell as the building block of the final architecture.

I A cell is a DAG consisting of an ordered sequence of N nodes.

I Each node x(i) is a latent representation (e.g. a feature map in CNNs).

I Each directed edge (i, j) is associated with some operation o(i,j) that transforms
x(i).

I Each intermediate node is computed based on all of its predecessors:
x(j) =

∑
i<j o

(i,j)(xi)
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Continuous Relaxation and Optimization

I Let O be a set of candidate operations, where each operation represents some func-
tion o to be applied to x(i).

I To make the search space continuous, it relaxes the categorical choice of a particular
operation to a softmax over all possible operations:

o(i,j)(x) =
∑

o∈O
exp(α

(i,j)
o )∑

o′∈O exp(α
(i,j)

o′ )
o(x)

I The operation mixing weights for a pair of nodes (i, j) are parameterized by a vector
α(i,j) of dimension |O|.

I At the end of search, a discrete architecture can be obtained by replacing each mixed

operation o(i,j) with the most likely operation, i.e., o(i,j) = arg maxo∈O α
(i,j)
o .
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Summary

I Hyperparameter optimization
• Black-box optimization
• Multi-fidelity optimization

I Nural architecture search
• Search space
• Search strategy
• Performance estimation

I Meta-learning
• Learning from task properties
• Learning from prior model evaluation
• Learning from prior models
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