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Robust Machine Learning

● Availability attacks
○ Prevent the inference system from working

● Confidentiality attacks
○ Extract sensitive information from the model

● Integrity attacks
○ Compromise the quality of the trained model

during inference

during training

Omniscient malicious devices
within our data-parallel training environment



Define GARs
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Machine Learning with Adversaries:
Byzantine Tolerant Gradient Descent

P. Blanchard, E. Mhamdi, R. Guerraoui, J. Steiner
NIPS 2017



The Problem with SGD
● Data-parallel SGD aggregation is a linear combination of all gradients:

● A single malicious gradient Gn can undo all other gradients and replace them 
with a target gradient U:

We need a new Gradient Aggregation Rule (GAR)



A Definition of Byzantine Resilience

● A GAR is (α, f)-Byzantine Resilient iff:
○ Given f byzantine gradients
○ Outputs a gradient that deviates from the correct one (g) by at most an angle α
○ Outputs a gradient whose moments are bound by those of the correct gradient g

We need an (α, f)-Byzantine Resilient GAR



Krum: an (α, f)-Byzantine Resilient GAR

● Idea:
○ The n - f non-byzantine gradients should form a tightly-packed cluster
○ Find a tightly-packed cluster of n - f - 1 gradients
○ Output the gradient that is closest to all others in this cluster

● Implementation:
○ Find the n - f - 2 closest Gj for every Gi (forming the n - f - 1 tightest cluster around Gi)
○ Find the Gi with the tightest overall cluster by minimizing

○ Output Gi



MultiKrum + Evaluation

● MultiKrum optimization:
○ Select k gradients instead of 1
○ Tradeoff between resiliency and 

convergence speed



Issues / Questions

● Why n - f - 1 gradients per cluster, instead of n - f ?

● Why the moments of the output of the GAR must be bounded by those of the 
real gradient, up to the 4th order?

● How are resiliency and convergence speed affected by different choices of k 
in MultiKrum?



The Hidden Vulnerability of
Distributed Learning in Byzantium

E. Mhamdi, R. Guerraoui, S. Rouault
ICML 2018



Brute: another (α, f)-Byzantine Resilient GAR

● Idea:
○ The n - f non-byzantine gradients should form a tightly-packed cluster
○ List all possible clusters of n - f gradients:

○ Find the most tightly-packed cluster:

○ Average the elements of the cluster

A very expensive GAR...



The Problem with GARs

● Models are typically large: the dimensionality of the gradients is d ≫ 1

● When d ≫ 1, the lp norms can hardly distinguish:
○ A small difference on each dimension
○ A large difference in a single dimension

● A malicious gradient can be very close to all good gradients according to the 
norm, but still have a very bad entry in one dimension

● If it gets selected, it is hard for SGD to converge to a good solution

A stronger resiliency guarantee is needed



The Solution: Bulyan
● Idea:

○ Act on each dimension independently
○ For each dimension, average β gradients that are around the median
○ With enough gradients, the median is bound by non-byzantine gradients

● Implementation:
○ Given θ ≥ 2f + 3 gradients, perform the following for each dimension
○ Select the β = θ - 2f ≥ 3 values closest to the median
○ Return their average



Bulyan: selecting θ gradients
● Bulyan

○ Requires n ≥ 4f + 3 gradients
○ Requires an (α, f)-Byzantine Resilient GAR
○ Uses the GAR to iteratively select θ = n - 2f ≥ 2f + 3 gradients

● Why?
○ It seems that the quorum requirement would hold without this selection
○ Without this selection, a larger percentage of byzantine nodes can be tolerated

● Possible Reasons
○ (α, f)-Byzantine Resilient GAR guarantees that Bulyan is (α, f)-Byzantine Resilient ?
○ To speed up the computation? But is it better than random sampling?
○ Does it provide better results than Bulyan without any selection?



Evaluation



DRACO:
Byzantine-resilient Distributed Training 

via Redundant Gradients
L.Chen, H.Wang, Z.Charles, D.Papailiopoulos



The Objective

We consider how to compute

in a distributed and adversary-resistant manner, assuming that adversarial nodes

● have access to infinite computational power, the entire data set, the training algorithm
● have knowledge of any defenses present in the system. 
● may collaborate with each other.



Median-based approaches

● Pros: they can be robust to up to a constant fraction of the compute nodes being adversarial
● Cons:

○ convergence for such systems require restrictive assumptions such as convexity
○ need to be re-tailored to each different training algorithm
○ the geometric median aggregation may dominate the training time in large-scale settings.



Solution: DRACO
Idea: use redundancy to guard against failures

Allocate B gradients to the P compute nodes using a P × B allocation matrix A. 
the redundancy ratio

To  guarantee convergence, r must satisfy r ≥ 2s + 1, where s is the 
number of adversarial nodes

1. Each worker processes rB/P gradients and sends an encoded 
linear combination of those to the PS.

2. After receiving the P gradient sums, the PS uses a decoding 
function to remove the effect of the adversarial nodes and 
reconstruct the original desired sum of the B gradients.

How to design A, E and D?



Encoding stage:

1.

2.

3.

4.

Decoding stage:

Encoding-decoding gradients
● The encoding schemes are based on the fractional repetition code and cyclic repetition code
● The decoding schemes utilize an efficient majority vote decoder and a novel Fourier decoder

Fractional repetition code with majority vote decoder 

Send to the PS



Cyclic Code with Fourier decoding

Let C be a P × P inverse discrete Fourier transformation (IDFT) matrix 

Let CL be the first P−2s rows of C and CR be the last 2s rows 

Encoding stage:

Encoding-decoding gradients

Send to the PS



Cyclic Code with Fourier decoding

Suppose there is a function φ(·) that can compute the adversarial node index set V

Decoding Stage:

1.

2.

3.

4.

This approach has linear-time in encoding and decoding

Encoding-decoding gradients



Experiments
Adversarial Attack Models:

1. Reversed gradient adversary send 
−cg to PS, for some c > 0

2. Constant adversary send κ = −100

In either setup, at each iteration, s nodes are 
randomly selected to act as adversaries.

Compare DRACO against SGD and a GM 
approach(chen et. al 2017).

DRACO converges several times faster 
than the GM approach, using both the 
repetition and cyclic codes.

End-to-end Convergence Performance



Per iteration cost of DRACO

On ResNet-152, VGG-19, and AlexNet

Experiments



Effects of number of adversaries

Experiments



Summary

● DRACO can resist any s adversarial compute nodes during training and returns a model identical to the one trained in the 
adversary-free setup. 

● In DRACO, most of the computational effort is carried through by the compute nodes. This allows the framework to offer up to 
orders of magnitude faster convergence in real distributed setups.

● With redundancy ratio r, DRACO can tolerate up to (r − 1)/2 adversaries, which is information–theoretically tight. Since in 
realistic regimes, only a constant number of nodes are malicious, DRACO is in general a fast approach.

● DRACO can be applied to any first-order methods, including gradient descent, SVRG, coordinate descent, and projected or 
accelerated versions of these algorithms.

Comments

● Comparison with Krum or Bulyan?
● Even for GM approach there is only one example



AGGREGATHOR: Byzantine Machine 
Learning via Robust Gradient 

Aggregation
G. Damaskinos, E. Mhamdi, R. Guerraoui, A. Guirguis, S. Rouault

SysML 2019



Types of Byzantine Resilience

Weak BR Strong BR

Any form of GAR that almost surely 
converges around a minima, despite 
the presence of f Byzantine workers.
Ensures                             to some 
extent

(Multi-)Krum

Weak BR + reliable against the 
dimensional leeway. 
Ensures not ending at a ‘bad’ optimum. 

Allowed dimensional leeway (in 
d>>1-dimensional vector space):

Bulyan

Allowed dimensional leeway (in 
d>>1-dimensional vector space):

DRACO



Characteristics of GARs so far
Required workers Method Privacy 

issues
Comparative 
Performance

m-Multi-Krum 2f + 3
With m ≤ n - f - 2 

“Median” (total 
squared distance)

+ ?

Bulyan 4f + 3 Median 
(coordinate-wise)

+ ?

DRACO 2f + 1 Gradient 
replication & 
coding scheme

+/- ?



Motivation for AggregaThor
Explicitly stated in the paper:

Implement previously proposed GAR in a realistic environment to test their 
practical scalability.

AggregaThor true (implicit) motivation:

The people from DRACO argue that their “framework offers up to orders of 
magnitude faster convergence in real distributed setups” compared to 
Median-based methods… Lets see if this holds true.



AggregaThor
Framework built on top of TensorFlow to implement state-of-the-art Byzantine 
resilience algorithms.

- Parameter server model
- Assumes correct parameter server

- AggregaThor manages the deployment and 
execution of a model training session over a 
cluster of machines.

- Uses (unreliable) UDP for faster transfers



AggregaThor Design specifics

Only tf.train.Server 
instances can create 
and modify the graph

Modular 
integration of 

GARs

Modify MPI communication points 
to employ UDP sockets

Instead of any 
node in the cluster.

Other GARs can 
be used



Evaluation
● CIFAR-10 Dataset
● CNN with 1.75M parameters  
● Metrics:

○ Throughput:  total gradients received per second

○ Classification accuracy

● 19 workers and 1 PS

Non-Byzantine Env. Byzantine Env.

● Baseline: vanilla TF
● Against: AggregaThor (with 

Multi-Krum, Bulyan, Median method*, 
simple average) and DRACO.

● Includes scalability eval. on 
ResNet-50

* Xie et al. Generalized Byzantine-tolerant SGD. 2018. Arxiv 1802.10116

● Baseline: vanilla TF
● Against: AggregaThor
● Corrupt data
● Dropped packets



Evaluation: Non-Byzantine Environment

50% of final acc 

* AggregaThor reaches (at 
some point) baseline acc

* DRACO as well, but takes 
longer time

2f+1 more gradients
required 

Multi-Krum +19%
Bulyan +43%



Evaluation: Non-Byzantine Environment



Evaluation: Byzantine Environment
Corrupted Data Dropped packets

Max. # of attackers (f = 8)

Mini-batch 250 
(seems like same picture as 5.a)



Concluding Remarks
● Authors argue that in practice, a weak Byzantine attack already requires a 

prohibitively large cost.
○ ≈ 1020 operations for 100 workers and vector precision of 10-9.

→ Practitioners can use AggregaThor with just Multi-Krum in most cases 

○ AggregaThor employs multi-aggregation rule: enable the server to leverage m > 1 workers in 
each step.

● BR against parameter server still an open issue



SGD: Decentralized Byzantine 
Resilience

E.Mhamdi, R.Guerraoui, A.Guirgui, S.Rouault



Motivation

PS

worker worker worker

PSPS PS

worker worker worker

PSPS

Networks with Byzantine workers Networks with Byzantine workers and 
parameter servers

Previous work assume the parameter server is free from malicious behavior, which is not necessary true.



GuanYu algorithm

F :  Multi–Krum
M : coordinate–wise median
2f + 3 ≤ q ≤ n − f    : the quorum used for M
                             : the quorum used for F

Local update

GuanYu does not wait for all n 
nodes to start aggregation



Proof of convergence
Assumptions: on top of the case with one trusted parameter server, GuanYu assumes

1. L is Lipschitz continuous.
2. After some step t_s ∈ N, all the non–Byzantine parameter vectors are roughly aligned.

Intuitions:

1. Non–Byzantine parameter vectors gets almost–surely arbitrary close to each other after some step t ∈ N.
2. By the contraction effect of the median and assumption 1, if one non–Byzantine parameter vector converges, 

the others will get close to it.
3. Learning rate η_t converging toward 0.

Stage 1 (before t_inflex): 

● Byzantine parameter vectors (noises) pushes non–Byzantine parameter vectors away from each other.

Stage 2 (after t_inflex):

● The learning rate becomes small enough, the contraction effect pulls back together the non–Byzantine 
parameter vectors.



Implementation

Compute gradients

Model update

TensorFlow

Communications

Compute M

GuanYu



Experiments

Setup:

● CIFAR-10 dataset
● CNN with 1.75M parameters, fixed batch size & learning rate
● up to 5/18 Byzantine in workers, ⅙ in parameter servers

Evaluation Metrics

● Throughput : measures the total number of updates that the deployed system can do per 
second.

● Accuracy: measures the top–1 cross–accuracy



Non–Byzantine Environment

More Byzantine players helps achieve a 
better convergence rate in terms of model 
updates, because increasing f forces 
servers to wait for more replies.



Non–Byzantine Environment

Explanation on the overhead:

1. GuanYu uses rather naive 
implementations comparing to 
TensorFlow in device placement, 
communication and calculation 
operators.

2. Converting tensors to numpy arrays 
(and vice versa) and feeding tensors 
to a graph incur a big overhead.



Byzantine Environment

Types of Byzantine attack:

1. send corrupted gradients to parameter 
servers

2. send corrupted parameter vectors/model 
to workers

3. send different replies to different 
participants

4. not responding at all to requests

“We tested different possible Byzantine 
behaviors and we got approximately similar 
results”



Conclusions and remarks 

● GuanYu is the first approach that combines the resilience to both Byzantine workers and 
Byzantine parameter servers

● GuanYu guarantees convergence in environments up to 1/3 Byzantine servers and 1/3 
Byzantine workers, which is optimal in the asynchronous setting.

● GuanYu has reasonable overhead compared to a non-Byzantine vanilla TensorFlow

Comments

1. Could have explored more NN architectures in the experiment. (e.g. LeNet, ResNet etc.)
2. GuanYu can tolerant 1/3 Byzantine servers, however, only 1/6 was tested in the 

experiment.
3. The runtime problem in converting tensor to numpy array might be possibly avoided?
4. Could have used better notations.



Fast Machine Learning with -Byzantine 
Workers and Servers
E. Mhamdi, R. Guerraoui, A. Guirguis

ACM Symposium on Principles of Distributed Computing (PODC) 2020



Motivation 
GuanYu Desired

Servers

Workers

Bulyan as GAR for workers’ 
gradients 
Median for models’ 
aggregation from servers

➢ Each worker requires communicating with 
majority of servers for computing median

Total Byzantine resilience with....

➢ Reduce worker-server communication as far as 
possible.

➢ Is having synchronous communication too bad? 
→ No, most param-server are synchronous

➢ Reduce number of communication rounds to 
mimic vanilla Parameter-server approach 

○ Vanilla: 2 communication rounds

➢ Assumes network asynchrony: no bound on 
communication delays . But no free lunch…

○ Requires 3 communication rounds

○ Assumes a maximum distance between 
parameter vectors (min. correct servers)

All-servers → 
All-workers 

param. 
broadcast

All-workers→ 
All-servers 
gradient 
broadcast

All-servers → 
All-servers 

param. 
broadcast

Server → 
all-workers 

param. 
broadcast 

All-workers→ 
Servers 
gradient 
unicast



LiuBei
● Does not trust workers nor servers and adds (almost) no communication overhead.

Scatter

Gather

Wrokers work independently 
and do not communicate

Correct servers communicate 
to bring their view of models 
back close to each other.

Servers

Workers



LiuBei - Steps

Scatter Gather

Workers work independently 
and do not communicate

Correct servers communicate 
to bring their view of models 
back close to each other.



LiuBei - Gather 



Gather - Lipschitz Filter 
Limit the growth of the computed model 
updates w.r.t. gradients 
Worker j owns               , do 2 things parallely:  

1. Locally estimate model:
2. Pulls a model from PS i:

GAR → both 
should be close

How close? → Lipschitz Coefficient should limit 
growth of 

K: list of all previous 
L-coefficients

Note: previous K come from 
other different servers as well



Gather - Models Filter 
Bound distance between 2 models in each 
successive (scatter) iteration
Assumption: all machines initialize models with the same state

GAR guarantees → estimate upper bound on model update

Local estimate model:

Pulled model from PS:

l: Lipschitz coeff. 



LiuBei - Gather



● Datasets: MNIST and CIFAR-10
● Different neural-network architectures (see table)
● Baselines: TensorFlow and GuanYu
● Number of workers: 20 (up to 8 Byzantine)
● Number of servers varies:

○ TensorFlow: 1 PS
○ LiuBei: 4 servers (tolerates up to 1 Byzantine)
○ GuanYu: 5 servers (tolerates up to 1 Byzantine)

● Metrics:
○ Throughput: number of parameter server updates per second
○ Classification accuracy

LiuBei Evaluation



LiuBei’s Performance
Around 5% loss 
compared to TF

Almost same 
convergence to 
TF

GuanYu seems to 
have a better end acc 
when 1 fps present
(dashed violet line)

User of higher 
batch-size yields 

better performance

GuanYu and LiuBei 
show similar 
convergence

24% overhead of 
LiuBei to TF

70% performance gain 
of LiuBei compared to 
GuanYu



LiuBei’s Performance
Throughput gain of LiuBei 

compared to GuanYu

LiuBei response to different 
server behaviour

LiuBei response to different 
number of byzantine workers

Severe degradation 
starts when 20% of 
nodes is Byxantine 40% acc 

downgrade (68% 
compared to TF) 
when fmax=8

Using f = fmax = 8

Increase of batch 
size has positive 
impact



Concluding Remarks



Limitation of these Techniques
● Might not work well with Federated Learning environments for...

○ Non i.i.d. data distribution ⇒ correct workers with outlier data are treated as byzantine
○ Draco requires data redundancy ⇒ incompatible with data-privacy guarantees

● Based on a parameter-server architecture
○ What about decentralized approaches (e.g. ring-allreduce, gossip) ?



Any Questions?


