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Adversarial Goals

I Confidentiality and privacy
• Confidentiality of the model itself (e.g., intellectual property)
• Privacy of the training or test data (e.g., medical records)

I Integrity
• Integrity of the predictions

I Availability
• Availability of the system deploying machine learning
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Adversarial Capabilities for Integrity Attacks

I Training phase

[Papernot et al., SoK: Security and Privacy in Machine Learning, 2018]

I Inference phase
• White box
• Black box

[Papernot et al., SoK: Security and Privacy in Machine Learning, 2018]
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Our Focus and Goal

I Data parallelization

I Each worker is prone to adversarial attack.

I Adversarial attacks: some unknown subset of computing devices are compromised
and behave adversarially (e.g., sending out malicious messages)

I Our goal: integrity of the model in the training phase

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

4 / 55



Our Focus and Goal

I Data parallelization

I Each worker is prone to adversarial attack.

I Adversarial attacks: some unknown subset of computing devices are compromised
and behave adversarially (e.g., sending out malicious messages)

I Our goal: integrity of the model in the training phase

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

4 / 55



Our Focus and Goal

I Data parallelization

I Each worker is prone to adversarial attack.

I Adversarial attacks: some unknown subset of computing devices are compromised
and behave adversarially (e.g., sending out malicious messages)

I Our goal: integrity of the model in the training phase

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

4 / 55



Our Focus and Goal

I Data parallelization

I Each worker is prone to adversarial attack.

I Adversarial attacks: some unknown subset of computing devices are compromised
and behave adversarially (e.g., sending out malicious messages)

I Our goal: integrity of the model in the training phase

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

4 / 55



Distributed Stochastic Gradient Descent (1/3)

I One parameter server, and n workers.

I Computation is divided into synchronous rounds.

I During round t, the parameter server broadcasts its parameter vector w ∈ Rd to all
the workers.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Distributed Stochastic Gradient Descent (2/3)

I At each round t, each correct worker i computes Gi(wt, β).

I Gi(wt, β): the local estimate of the gradient of the loss function ∇J(wt).

I β: a mini-batch of i.i.d. samples drawn from the dataset.

I Gi(wt, β) = 1
|β|

∑
x∈β∇li(wt, x)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Distributed Stochastic Gradient Descent (3/3)

I The parameter server computes F(G1, G2, · · · , Gn)

I Gradient Aggregation Rule (GAR): F(G1, G2, · · · , Gn) = 1
n

∑n
i=1 Gi

I The parameter server updates the parameter vector w← w − γF(G1, G2, · · · , Gn)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Distributed SGD with Byzantine Workers

I Among the n workers, f of them are possibly Byzantine (behaving arbitrarily).

I A Byzantine worker b proposes a vector Gb that can deviate arbitrarily from the vector
it is supposed.

[El-Mhamdi et al., Fast and Secure Distributed Learning in High Dimension, 2019]
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Averaging GAR and Byzantine Workers

I Averaging GAR: F(G1, G2, · · · , Gn) = 1
n

∑n
i=1 Gi

I w← w − γF(G1, G2, · · · , Gn)

I Even a single Byzantine worker can prevent convergence.

I Proof: if the Byzantine worker proposes Gn = nU−
∑n−1

i=1 Gi, then F = U.
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(α, f )-Byzantine-Resilience (1/2)

I Assume n workers, where f of them are Byzantine workers.

I α ∈ [0, π/2] and f ∈ {0, · · · , n}.

I (G1, · · · , Gn−f) ∈ (Rd)n−f are i.i.d. random vectors

• Gi ∼ g
• E[g] = J , where J = ∇J(w)

I (B1, · · · , Bf) ∈ (Rd)f are random vectors, possibly dependent between them and the
vectors (G1, · · · , Gn−f)
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(α, f )-Byzantine-Resilience (2/2)

I A GAR F is said to be (α, f )-Byzantine-resilient if, for any 1 ≤ j1 < · · · < jf ≤ n,
the vector F(G1, · · · , B1, · · · , Bf, · · · , Gn) satisfies:

1. Vector F that is not too far from the real gradient J , i.e., ||E[F]− J || ≤ r.

2. Moments of F should be controlled by the moments of the (correct) gradient estimator
g, where E[g] = J .

[Blanchard et al., Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent, 2017]
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Byzantine-Resilience GAR

I Median

I Krum

I Multi-Krum

I Brute
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Median

I n ≥ 2f + 1

I median(x1, · · · , xn) = arg minx∈R
∑n

i=1 |xi − x|

I d: the gradient vectors dimension.

I Geometric median
F = GeoMed(G1, · · · , Gn) = arg minG∈Rd

∑n
i=1 ||Gi − G||

I Marginal median

F = MarMed(G1, · · · , Gn) =

median(G1[1], · · · , Gn[1])
...

median(G1[d], · · · , Gn[d])

 (1)
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Krum

I n ≥ 2f + 3

I Idea: to preclude the vectors that are too far away.

I s(i) =
∑

i→j ||Gi − Gj||2, the score of the worker i.

I i→ j denotes that Gj belongs to the n− f− 2 closest vectors to Gi.

I F(G1, · · · , Gn) = Gi∗

I Gi∗ refers to the worker minimizing the score, s(i∗) ≤ s(i) for all i.

14 / 55



Krum

I n ≥ 2f + 3

I Idea: to preclude the vectors that are too far away.

I s(i) =
∑

i→j ||Gi − Gj||2, the score of the worker i.

I i→ j denotes that Gj belongs to the n− f− 2 closest vectors to Gi.

I F(G1, · · · , Gn) = Gi∗

I Gi∗ refers to the worker minimizing the score, s(i∗) ≤ s(i) for all i.

14 / 55



Krum

I n ≥ 2f + 3

I Idea: to preclude the vectors that are too far away.

I s(i) =
∑

i→j ||Gi − Gj||2, the score of the worker i.

I i→ j denotes that Gj belongs to the n− f− 2 closest vectors to Gi.

I F(G1, · · · , Gn) = Gi∗

I Gi∗ refers to the worker minimizing the score, s(i∗) ≤ s(i) for all i.

14 / 55



Krum

I n ≥ 2f + 3

I Idea: to preclude the vectors that are too far away.

I s(i) =
∑

i→j ||Gi − Gj||2, the score of the worker i.

I i→ j denotes that Gj belongs to the n− f− 2 closest vectors to Gi.

I F(G1, · · · , Gn) = Gi∗

I Gi∗ refers to the worker minimizing the score, s(i∗) ≤ s(i) for all i.

14 / 55



Krum

I n ≥ 2f + 3

I Idea: to preclude the vectors that are too far away.

I s(i) =
∑

i→j ||Gi − Gj||2, the score of the worker i.

I i→ j denotes that Gj belongs to the n− f− 2 closest vectors to Gi.

I F(G1, · · · , Gn) = Gi∗

I Gi∗ refers to the worker minimizing the score, s(i∗) ≤ s(i) for all i.

14 / 55



Krum

I n ≥ 2f + 3

I Idea: to preclude the vectors that are too far away.

I s(i) =
∑

i→j ||Gi − Gj||2, the score of the worker i.

I i→ j denotes that Gj belongs to the n− f− 2 closest vectors to Gi.

I F(G1, · · · , Gn) = Gi∗

I Gi∗ refers to the worker minimizing the score, s(i∗) ≤ s(i) for all i.

14 / 55



Multi-Krum

I Multi-Krum computes the score for each vector proposed (as in Krum).

I It selects m vectores G1∗ , · · · , Gm∗ , which score the best (1 ≤ m ≤ n− f− 2).

I It outputs their average 1
m

∑
i Gi∗ .

I The cases m = 1 and m = n correspond to Krum and averaging, respectively.

[Blanchard et al., Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent, 2017]
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Brute

I n ≥ 2f + 1

I Q = {G1, G2, · · · , Gn}

I R = {X |X ⊂ Q, |X | = n− f}
• The set of all the subsets of n− f

I S = arg minX∈R(max(Gi,Gj)∈X 2(||Gi − Gj||))
• Selects the n− f most clumped gradients among the submitted ones.

I F(G1, · · · , Gn) = 1
n−f

∑
G∈S G

16 / 55



Brute

I n ≥ 2f + 1

I Q = {G1, G2, · · · , Gn}

I R = {X |X ⊂ Q, |X | = n− f}
• The set of all the subsets of n− f

I S = arg minX∈R(max(Gi,Gj)∈X 2(||Gi − Gj||))
• Selects the n− f most clumped gradients among the submitted ones.

I F(G1, · · · , Gn) = 1
n−f

∑
G∈S G

16 / 55



Brute

I n ≥ 2f + 1

I Q = {G1, G2, · · · , Gn}

I R = {X |X ⊂ Q, |X | = n− f}
• The set of all the subsets of n− f

I S = arg minX∈R(max(Gi,Gj)∈X 2(||Gi − Gj||))
• Selects the n− f most clumped gradients among the submitted ones.

I F(G1, · · · , Gn) = 1
n−f

∑
G∈S G

16 / 55



Brute

I n ≥ 2f + 1

I Q = {G1, G2, · · · , Gn}

I R = {X |X ⊂ Q, |X | = n− f}
• The set of all the subsets of n− f

I S = arg minX∈R(max(Gi,Gj)∈X 2(||Gi − Gj||))
• Selects the n− f most clumped gradients among the submitted ones.

I F(G1, · · · , Gn) = 1
n−f

∑
G∈S G

16 / 55



Brute

I n ≥ 2f + 1

I Q = {G1, G2, · · · , Gn}

I R = {X |X ⊂ Q, |X | = n− f}
• The set of all the subsets of n− f

I S = arg minX∈R(max(Gi,Gj)∈X 2(||Gi − Gj||))
• Selects the n− f most clumped gradients among the submitted ones.

I F(G1, · · · , Gn) = 1
n−f

∑
G∈S G

16 / 55



MNIST CIFAR-10
[El Mhamdi et al., The Hidden Vulnerability of Distributed Learning in Byzantium, 2018]
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Weak Byzantine Resilience

I Limitation of previous aggregation methods.

I If gradient dimension d� 1, then the distance function between two vectors ||X−Y||p,
cannot distinguish these two cases:

I 1. Does X and Y disagree a bit on each coordinate?

I 2. Does X and Y disagree a lot on only one?
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Strong Byzantine Resilience

I Ensuring convergence (as in weak Byzantine resilience functions).

I Ensures that each coordinate is agreed on by a majority of vectors that were selected
by a Byzantine resilient aggregation rule A.

I A can be Brute, Krum, Median, etc.

I Bulyan is a strong Byzantine-resilience algorithm.
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The Hidden Vulnerability of Distributed
Learning in Byzantium
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Bulyan - Step One (1/2)

I n ≥ 4f + 3

I A two step process.

I The first one is to recursively use A to select θ = n− 2f gradients:

1. With A, choose, among the proposed vectors, the closest one to A’s output (for Krum
this would be the exact output of A).

2. Remove the chosen gradient from the received set and add it to the selection set S.

3. Loop back to step 1 if |S| < θ.
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Bulyan - Step One (2/2)

I θ = n − 2f ≥ 2f + 3, thus S = (S1, · · · , Sθ) contains a majority of non-Byzantine
gradients.

I For each i ∈ [1..d], the median of the θ coordinates i of the selected gradients is
always bounded by coordinates from non-Byzantine submissions.
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Bulyan - Step Two

I The second step is to generate the resulting gradient F = (F[1], · · · , F[d]).

I ∀i ∈ [1..d], F[i] = 1
β

∑
X∈M[i] X[i]

I β = θ − 2f ≥ 3

I M[i] = arg minR⊂S,|R|=β(
∑

X∈R |X[i]− median[i]|)

I median[i] = arg minm=Y[i],Y∈S(
∑

Z∈S |Z[i]− m|)

I Each ith coordinate of F is equal to the average of the β closest ith coordinates to
the median ith coordinate of the θ selected gradients.
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[El Mhamdi et al., The Hidden Vulnerability of Distributed Learning in Byzantium, 2018]

24 / 55



AggregaThor: Byzantine Machine Learning
via Robust Gradient Aggregation

25 / 55



AggregaThor (1/2)

I A framework that handles the distribution of the training of a TensorFlow neural
network graph over a cluster of machines.

I This distribution is robust to Byzantine cluster nodes.

[Damaskinos et al., AggregaThor: Byzantine Machine Learning via Robust Gradient Aggregation, 2019]
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AggregaThor (2/2)

I Relies on Multi-Krum and Bulyan.

I Multi-Krum selects m gradients that deviate less from the majority
• Based on their relative distances.

I Bulyan takes the aforementioned m vectors.

• Computes their coordinate-wise median.
• Produces a gradient that coordinates are the average of the m − 2f closest values to

the median.
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TensorFlow Limitation

I In TensorFlow, Byzantine resilience cannot be achieved solely through the use of a
Byzantine-resilient GAR.

I TensorFlow allows any node in the cluster to execute arbitrary operations anywhere
in the cluster.

I A single Byzantine worker could continually overwrite the shared parameters with
arbitrary values.

I AggregaThor patches TensorFlow to overcome the above issues.
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n = 19, f = 4 (n ≥ 4f + 3)
[Damaskinos et al., AggregaThor: Byzantine Machine Learning via Robust Gradient Aggregation, 2019]
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What if parameter servers are Byzantine?
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SGD: Decentralized Byzantine Resilience
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[El Mhamdi et al., SGD: Decentralized Byzantine Resilience, 2019]
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GuanYu

I Byzantine tolerant learning algorithm that is

1. Resilience to Byzantine workers.
2. Resilience to Byzantine parameter servers.

I GuanYu tolerates up to 1
3

Byzantine servers and 1
3

Byzantine workers.

I GuanYu uses a GAR for aggregating workers’ gradients and Median for aggregating
models received from servers.
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Assumptions and Notations (1/2)

I Asynchronous network: the lack of any bound on communication delays.

I Synchronous training: bulk-synchronous training.

• The parameter server does not need to wait for all the workers’ gradients to make
progress, and vice versa.

• The quorums indicate the number of messages to wait before aggregating them.
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Assumptions and Notations (2/2)

I nps ≥ 3fps+3 the total number of parameter servers, among which fps are Byzantine.

I nwr ≥ 3fwr + 3 the total number of workers, among which fwr are Byzantine.

I M the coordinate-wise median (used in both workers and servers).

I F the GAR function (used in the servers)

I 2fps + 3 ≤ qps ≤ nps − fps the quorum used for M.

I 2fwr + 3 ≤ qwr ≤ nwr − fwr the quorum used for F.

I d the dimension of the parameter space Rd.
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GuanYu Algorithm - Step 1

I At each step t, each non-Byzantine server i broadcasts its current parameter vector
wt
i to every worker.

I Each non-Byzantine worker j aggregates with M the qps first received wt.

I And computes an estimate Gtj of the gradient at the aggregated parameters.
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GuanYu Algorithm - Step 2

I Each non-Byzantine worker j broadcasts its computed gradient estimation Gtj to
every parameter server.

I Each non-Byzantine parameter server i aggregates with F the qwr first received Gt.

I And performs a local parameter update with the aggregated gradient, resulting in
wt
i.
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GuanYu Algorithm - Step 3

I Each non-Byzantine parameter server i broadcasts wt+1
i to every other parameter

servers.

I They aggregate with M the qps first received wt+1
k .

I This aggregated parameter vector is wt+1
i .
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[El Mhamdi et al., SGD: Decentralized Byzantine Resilience, 2019]
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GuanYu Limitations

I Network asynchrony assumtion is costly:
• It requires three communication rounds, instead of two in the vanilla case.

I It requires a large number of compute nodes and server replicas to work, as one
cannot differentiate between a Byzantine machine and a slow one in such network.
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Fast Machine Learning with Byzantine
Workers and Servers

41 / 55



LiuBei

I Uses a GAR to aggregate workers’ gradients.

I Tolerating Byzantine servers using a filtering technique and the scatter/gather pro-
tocol (both assume network synchrony).

• Scatter phase: servers work independently and do not communicate with each other.
• Gather phase: correct servers communicate to bring their view of models back close to

each other.
• The number of gather steps is usually very small and hence, their overhead is insignifi-

cant.
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Assumptions and Notations

I Network synchrony: an upper bound on communication machines.

I nps ≥ 3fps+1 the total number of parameter servers, among which fps are Byzantine.

I nwr ≥ 2fwr + 1 the total number of workers, among which fwr are Byzantine.
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LiuBei - Byzantine Workers

I LiuBei can use any existing synchronous GAR that follows the robustness definition
(α, f )-Byzantine-Resilience.
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LiuBei - Byzantine Servers (1/2)

I Tolerating Byzantine servers using robust aggregation requires communication with
all servers in each round: big communication overhead.

I LiuBei lets each worker pull only one model from any of the server replicas and then
checks if the pulled model is suspicious or not.
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LiuBei - Byzantine Servers (2/2)

I A worker does this check by applying two filters on the pulled model: the Lipschitz
filter and the models filter.

I If the model is suspicious, the worker discards it and pulls a new model from another
parameter server.

I The maximum number of models that can be pulled by a worker in one iteration is
fps + 1.
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Lipschitz Filter

I Assume at time t worker j owns a model wt
j and computes gradient Gtj based on

that model.

I A correct server i should include Gtj while updating its model wt
i, given network

synchrony.

I The worker j then does two steps in parallel: wt+1
i

1. Estimates the updated model locally based on its own gradient: wt+1
j(l)

2. Pulls a model wt+1
i from a parameter server i.

I If server i is correct, then, the growth of the pulled model wt+1
i should be close to

that of the estimated local model wt+1
j(l).
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Model Filter

I LiuBei uses the model filter to bound the distance between models in any two suc-
cessive iterations.

I We assume all correct machines initialize models with the same state.

I Building upon the guarantees given by the used GAR, at iteration t, a worker can
estimate an upper bound on the distance between two successive states of a correct
model.
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LiuBei Algorithm (2/2)

I LiuBei operates in two phases:
scatter and gather.

I One gather step is executed every T

iterations (line 8 to 11).

I We call the whole T iterations a
scatter step.
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[El Mhamdi et al., Fast Mahcine Learning with Byzantine Workers and Servers, 2019]
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Summary
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Summary

I Integrity in data-parallel learning

I Weak Byzantine resilience

I Strong Byzantine resilience

I Byzantine parameter servers
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