
Model-Parallelization
FID3024 Systems for Scalable Machine Learning

Jacob Lindbäck, Tianze Wang, Lennart Van der Goten
Nov. 2, 2020

1

Papers

1. The TensorFlow Partitioning and Scheduling Problem
2. Device Placement Optimization with Reinforcement Learning
3. A Hierarchical Model for Device Placement
4. Placeto: Learning Generalizable Device Placement Algorithms for

Distributed Machine Learning
5. A Single-Shot Generalized Device Placement for Large Dataflow

Graphs
6. Spotlight: Optimizing Device Placement for Training Deep Neural

Networks

2

The Tensorflow Partitioning
and Scheduling problem:
It’s the critical path!
(Mayer et al 2017)

3

Some background
Distributed graph processing algorithms via partitioning:

Main objective: Minimize traffic between devices while
preserving load balance. This is in fact NP-hard, and often
approach with heuristics, e.g GraphH, GraphX etc.

4

Some background

● The computations associated with Tensorflow is also a Graph. Yet
different than those of graph partitioning. It has some additional
structure with data flows between vertex sources and sinks.

● Mayer et al. suggested a formal description of the tensorflow
partitioning and scheduling problem, and used that to establish its
NP-completeness.

5

Tensorflow = Partitioning + Scheduling

● Tensorflow involves both partitioning of the DAG, and local
scheduling on the devices.

● Since solving the problem exactly is intractable, heuristics are
preferred. The authors suggested solving the partitioning problem
and the scheduling problem sequentially, and proposed a few
heuristics for these subproblems.

6

The TF Problem

7

A selection of partitioning heuristics (single
objective)

● CP (Critical Path): Finds the longest path in the DAG from the
source to the sink and assigns its vertices to fastest working unit if
possible. If it is not possible, it’s split across the fastest devices.

The remaining vertices are assigned based on available resources.

8

A selection of partitioning heuristics
(multi-objective)
● MITE (Memory, Importance, Traffic, Execution Time):

Objective:

Randomly traverse all the vertices and assign to device that
minimize mite.

● DFS (Depth-First search):

Objective:

Using a depth-first search to traverse the vertices. Vertices are
assigned to the device that minimizes the dfs_score. 9

Partitioning heuristics

10

Scheduling heuristics
● Highest path computation time first (PCT) -scheduling: If the

computation times of the successors (direct or indirect) of a vertex is
high, that vertex is prioritized.

● Maximum successor rank first (MSR) -scheduling: Prioritize
vertices that are blocking the computations in other devices, to
avoid idleness of other working nodes.

11

The Tensorflow Partitioning and Scheduling
problem
Numerical experiments

● Simulated 50 devices with different computational speed and
transfer times.

● Benchmarked the heuristics on three Tensorflow networks.

● Baselines: HEFT-algorithm (adjusted for Tensorflow), Hash
partitioning & FIFO-scheduling.

12

Results

13

Results

14

Some thoughts on their contributions

● Having a formal description for the Tensorflow problems is crucial to
properly analyze algorithms.

● The proposed heuristics rely on that the computational speed,
transfer speed between devices etc. are constant and known apriori.
This is often not the case. However, one of their heuristic: CP + FIFO is
both competitive and fairly independent of these parameters.

● Would have been interesting to compare their heuristics with the
RL-based approaches.

15

Device Placement Optimisation with RL (Google Brain)

- Motivation: Device placement is typically done manually
- Often difficult to make an informed decision
- Tedious work
- Speedup can be significant!

- Idea: Consider device placement as a RL problem
in which the execution time determines the
reward

- Input: Computational graph (a DAG)
- Output: One assigned device for each operation

- Challenges:
- Modern neural networks typically comprise thousands of

operations
- Optimization should yield significant speedup to be useful
- Should minimize amount of human assistance [next paper]

16

Device Placement Optimisation with RL (Google Brain)

- Formal Definition:
- Let be a computational graph with operations
- Assume we have devices (GPUs/CPUs)
- A placement assigns exactly one device to each operation
- Execution time:

- How to define the reward ?
- Straightforward:

- Not robust enough at the beginning/end of training
- Better choice: resp. large constant if placement is infeasible

- RL Objective:
- Cost function:
- Gradient:

17

Device Placement Optimisation with RL (Google Brain)

Matmul,
Conv2d
etc.

Encode
preceding/subsequent
operations

Which
dimensions
does the output
have?

Same length as input

Attentional LSTM

18

Device Placement Optimisation with RL (Google Brain)

- The need for co-location:
- The approach does not scale to large networks comprising thousands of operations
- A heuristic needs to be defined that merges (“co-locates”) operations
- Instead of assigning one device to one operation, one device is assigned to

multiple operations
- Shrinks the sequence length as fewer operations need to be assigned

- Heuristic:
- The output of each operations is co-located with its gradients
- If the output of some operation is solely used by some operation both

operations are co-located
- Recursively apply rules until they are no longer applicable
- Add some manual corrections (e.g. each LSTM cell makes up one group)

19

Device Placement Optimisation with RL (Google Brain)

- Distributed Training:
- Asynchronous training

involving one parameter
server and controllers
each having workers

- Controller sample
placements for each
of their workers

- Workers measure the
elapsed time w.r.t. to
some placement

- Measurements are
repeated to get more
reliable results 20

Device Placement Optimisation with RL (Google Brain)

- Benchmarks
- RNNLM: Language model

with multiple LSTM layers
- NMT: Machine translation

model with attention
mechanism

- Inception-v3: Image
classification

- Baselines
- Single-CPU
- Single-GPU
- Scotch: Off-the-shelf

combinational optimizer
- MinCut: Same as Scotch

but only include GPUs
- Expert-designed:

- Put entire model on
GPU (if it fits)

- Co-locate attention
and softmax 21

Device Placement Optimisation with RL (Google Brain)

- RNNLM: Model fits on one GPU and RL-based approach recognizes that
- NMT: RL-based approach recognizes that the embeddings can be placed on the

CPU
- Inception-v3:

- 2 GPUs: Places all operations on a single GPU (second GPU idles)
- 4 GPUs: Leverages all four GPUs, yields significant speedup

22

Neural MT:

Inception-v3:

23

Device Placement Optimisation with RL (Google Brain)

- Conclusion:
- First RL-driven approach to tackle the device placement task
- Formulates device placement as sequence-to-sequence

problem in which operations are associated to devices using
LSTMs

- Only the execution time and the number of devices are used as
inputs

- Identifies non-trivial placements

24

A Hierarchical Model for Device Placement (Google Brain)

- Essentially: An iterative update by the same authors
- Identified weaknesses of first paper:

- Large networks can only be considered when
operations are co-located a priori

- Decreases granularity which possibly degrades
quality of found placements

- Not end-to-end trainable
- Solution: Define two networks

- Grouper: Maps operations to groups
- Placer: Maps groups to devices 25

A Hierarchical Model for Device Placement (Google Brain)

Same as in last paper
Time is not modeled!

Predicts index of group
for each operation (in
isolation)

26

A Hierarchical Model for Device Placement (Google Brain)

- Authors argue that the new model can’t be compared with the previous one because
the hardware is different.

- If we measure the speedup w.r.t the best heuristic (a relative comparison), the new
method performs significantly better than the old one (60% on NMT)

27

Device Placement Optimisation with RL (Google Brain)

- Is it beneficial to optimize device placements?
- Could be faster to just train a model naively and

thereby saving the runtime optimization costs…
- WMT ‘14: Machine translation corpus for EN-DE

- New model reduces runtime/step by 46.7%
- Optimizing device placement before saves 265 GPU

hours
- Takeaway: It makes sense to do the optimization (at

least for WMT ‘14)
28

Device Placement Optimisation with RL (Google Brain)

- Is the Grouper necessary?
- Ablation study: Replace groupings with randomized

groupings

29

Device Placement Optimisation with RL (Google Brain)

- Conclusion:
- Both papers tackle the device placement problem using

policy gradients
- In order to be able to optimize large networks, the

operations need to be grouped first to address
performance issues/vanishing gradients
- First paper uses (recursive) heuristics + human input
- Second paper uses a Grouper network

- Optimization reduces overall training time on WMT’14

30

Placeto: Learning Generalizable
Device Placement Algorithms for
Distributed Machine Learning
Addanki, Ravichandra, et al. "Placeto: Learning generalizable device placement
algorithms for distributed machine learning." arXiv preprint arXiv:1906.08879 (2019).

33rd Conference on Neural Information Processing Systems (NeurIPS 2019),
Vancouver, Canada.

31

Motivation

● Previous RL-based device placement methods are promising
but require significant amount of retraining to find a good
placement for each computation graph due to:
○ Not generalizable device placement policies (i.e., learn policy only for a

single computation graph)
○ Low training efficiency

● Placeto incorporates two key ideas:
○ Find a sequence of iterative placement improvements (simpler to learn）
○ Use graph embeddings

32

Problem Formulation

● : set of atomic computational operations (neurons)
● : set of communication edges (data dependencies)
● : computation graph (DNN)
● : set of 𝑚 devices (CPU and/or GPU)
● : a mapping that assigns a device to each op, (a

placement)
● Goal: minimize the execution time (one step training

time) of the placement

33

Iterative Placement (MDP Formulation)

● Let be a family of computation graphs, each node in an
observation state of the Markov decision process (MDP) has the
following features:

○ Estimated run time of 𝑣
○ Total size of tensors output by 𝑣
○ The current device placement of 𝑣
○ A flag indicating whether 𝑣 has been “visited” before
○ A flag indicating whether is the “current” node for which the placement to be

updated.

● At the initial state
○ Nodes are assigned to device arbitrarily
○ The visit flags are all 0
○ An arbitrary node is selected as the current node

34

Iterative Placement (MDP Formulation), Cont.

● At a step in the MDP, the agent selects an action to update the placement
for the current node in state . The MDP then transitions to a new state
a in which 𝑣 is marked as visited and an unvisited node is selected as the
new current node.

●
●
●
●
●
●
● The episode ends in steps when devices has been assigned to all nodes.

35

Iterative Placement (MDP Formulation), Cont.

● Two approaches for assigning rewards in the MDP:
○ 0 for intermediate step, the negative run time of the final placement at the final

step
○ Assigning an intermediate reward

● Intermediate rewards:
○ Improve credit assignment in long training episodes (e.g., large NN) and reduce

variance of the policy gradient estimates
○ Training with intermediate rewards is mode expensive.

● To avoid generating placement that exceeds the memory limit on
device, a penalty in the reward proportional to the peak memory
utilization if it is above a certain threshold M.

36

Placeto Architecture
● Placeto learns placement policies by directly parameterizing the

MDP policy using a neural network.
● At each step of the MDP, the policy network takes the graph

configuration in state as input, and outputs an updated
placement for the t-th node.

37

Placeto Architecture, Cont.

● Need to encode the graph-structured information of the state as a
real-valued vector.

● Placeto achieves this vectorization via a graph embedding procedure.

38

Results

39

Results, Cont.

40

Placeto Summary

Pros
● Iterative placement

improvement policy
● Generalizability
● More efficient training and

can find better placement
compared to the chosen
baseline

● Simulator to improve
training speed

● Code available online

Cons
● Generalizability within the

same family of computation
graphs

● Policy gradient training
● Still need grouping,

otherwise can not scale to
large computation graphs

● Spotlight is mentioned but
not included in the baseline

41

A Single-Shot Generalized Device
Placement for Large Dataflow Graphs
(SGDP)
Zhou, Yanqi, et al. "A Single-Shot Generalized Device Placement for Large Dataflow
Graphs." IEEE Micro 40.5 (2020): 26-36

42

Motivation

● Previous RL-based device placement methods are promising but
are:

○ Computationally expensive
○ Unable to handle large graphs (more than 50,000 nodes)
○ Do not generalize well to unseen computation graphs

● SGDP: an efficient single-shot, generalized deep RL method based
on a scalable sequential attention mechanism over a graph neural
network that is transferable to new graphs.

43

Problem Formulation

● : set of atomic computational operations (neurons)
● : set of communication edges (data dependencies)
● : computation graph (DNN)
● : set of 𝑚 devices (CPU and/or GPU)
● : a mapping that assigns a device to each op, (a

placement)
● Goal: minimize the execution time (one step training

time) of the placement

44

SGDP: End-to-End Placement Policy
● The policy network of SGDP consists:

○ A graph embedding network (learns the graphical representation of any dataflow graph)
○ A placement network (learns a placement strategy over the given graph embeddings)

● The two components in the policy network are jointly trained in an end-to-end
fashion.

● The RL objective in SGDP is defined to simultaneously reduce the expected
runtime of the placements over a set of N computation graph.

● SGDP use Proximal Policy Optimization (PPO) to optimize the objective to
improve efficiency.

45

SGDP: End-to-End Placement Policy, Cont.

46

Graph Embedding Network

● SGDP uses Graph Neural Networks (GNNs) to capture the topological information
in the dataflow graph

● GraphSAGE is an inductive framework that leverages node attribute information to
efficiently generate representations on previously unseen data.

● SGDP adopts the feature aggregation scheme in GraphSAGE to model the
dependencies between the operations and build a general, end-to-end device
placement method for a wide set of dataflow graphs.

● Nodes and edges in the dataflow graph are represented as the concatenation of their
meta features (e.g., operation type, output shape, adjacent node ids) and are further
encoded by the graph embedding network into a trainable representation.

47

Placement Networks

● SGDP uses a transformer-based attentive network to generate
operation placements in an end-to-end fashion.

○ Remove the positional embedding in the original transformer (graph embedding
already has spatial information, prevent overfitting on node identifications.

○ Use segment-level recurrence (capture long-term dependencies efficiently)

48

Results

Table 1. Runtime comparison
between SGDP-one, human

expert, TensorFlow METIS, and
HDP on six graphs (RNNLM,

GNMT, Transformer-XL,
Inception, AmoebaNet, and

WaveNet). Search speedup is
the policy network training
time speedup compared to

HDP (reported values are
averages of six runs).

49

Results, Cont.

Scalability Analysis

● SGDP demonstrate
superhuman performance on
large graphs such as 8-layer
GNMT (21.7%/36.5% better than
HP/HDP) and 8-layer RNNLM
(3.8%/58.1% better than HP/
HDP).

● For all of the related SoTA work,
Placeto and REGAL do not
provide any results on 8-layer
RNNLM or 8-layer GNMT (more
than 50 000 nodes). HDP
reports inferior performance on
8-layer RNNLM and 8-layer
GNMT than human placement.

Generalization

● SGDP-zeroshot: directly runs inference on the
pre-trained SGDP model.

● SGDP-finetune: further trains the pre-trained
SGDP model for an additional 50 training steps.

● We find that:
○ SGDP-finetune almost matches the

performance of SGDP-one, degrading the
placement runtime on average by only 1.2%
compared to SGDP-one and outperforms
both human placement and HDP
significantly.

○ SGDP-zeroshot completely eliminates the
training for the target unseen graphs, while
being only 3.7% worse on average than
SGDP-one and being over 10% better than
human placement.

50

SGDP Summary
Pros
● Generalizability to any

unseen graphs
● More efficient training with

PPO
● End-to-end placement policy

Cons
● Writing can be better? e.g., using

term with defining, GDP and
SGDP are used interchangeably.

● Not comparing to better
baselines (Spotlight, Placeto).

● What does single-shot mean?

51

Spotlight: Optimizing Device
Placement for Training
Deep Neural Networks

(Gao et al. 2018)

52

The main idea

● They viewed the partition
problem as a Markov Decision
Process:

● That is, each operation (i.e. a
vertex of the graph) is assigned
to the working units
sequentially, based on current
state.

53

Some preliminaries

● Reward function:

● State-action value function:

● Expected reward:

In classical policy ascent, the first representation of the objective is
used, which gives the updates:

54

Proximal Policy Optimization

● Rather than using policy gradient algorithms to update the
parameters, they suggested a proximal policy optimization, which is
uses the 2nd representation of the expected reward.:

● The latter constitutes a lower bound of the expected reward via:

55

Proximal Policy Optimization

Rather than maximizing the expected reward, the lower bound is
iteratively maximized. The lower bound is approximated as:

56

The Spotlight algorithm

57

The Spotlight algorithm

Simulate actions from
current policy

58

The Spotlight algorithm

Estimate the training time
of the current actions. If
it’s better that previous

iterates, then update the
currently best action.

59

The Spotlight algorithm

Compute the objective
function and maximize

w.r.t the new policies.

60

Model of the placement policy: RNN with
LSTM-cells

Rather than feeding all operations into the net, they
use a operation vocabulary to group them into
larger ops. This ensures that related operations are
co-located.

61

Results

62

Clever partitions that Spotlight finds

63

Some thoughts

● Applying proximal policy optimization to the partitioning problem is
both very innovative, and a seemly powerful technique.

● The derived properties are based the theoretical lower bound of the
expected reward:

While in their implementation, the approximation is considered:

Beta is treated as a hyperparameter (set to 1). Are there tighter lower
bounds to exploit?

64

... yet another comment

● Their grouping strategy is both intuitive and simple, but might be
suboptimal. Would have been interesting to see the effect of
augmenting Spotlight with a model-based grouper (e.g. one similar
to that of the Hierarchical model considered in this module).

65

