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The Tensorflow Partitioning
and Scheduling problem:
[t’s the critical path!

(Mayer et al 2017)




Some background

Distributed graph processing algorithms via partitioning:

*’ Vertex-cut

Fig. 1. Vertex-cut and Edge-cut.

Main objective: Minimize traffic between devices while
preserving load balance. This is in fact NP-hard, and often
approach with heuristics, e.g GraphH, GraphX etc.



Some background

The computations associated with Tensorflow is also a Graph. Yet
different than those of graph partitioning. It has some additional
structure with data flows between vertex sources and sinks.

Mayer et al. suggested a formal description of the tensorflow

partitioning and scheduling problem, and used that to establish its
NP-completeness.

2.1 NP-completeness
THEOREM 2.1. TF is NP-complete



Tensorflow = Partitioning + Scheduling

Tensorflow involves both partitioning of the DAG, and local
scheduling on the devices.

Since solving the problem exactly is intractable, heuristics are
preferred. The authors suggested solving the partitioning problem

and the scheduling problem sequentially, and proposed a few
heuristics for these subproblems.



The TF Problem

1. Global Partitioning

| 2. Local Scheduling |
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Figure 1: Problem Formulation.




A selection of partitioning heuristics (single
objective)

e CP (Critical Path): Finds the longest path in the DAG from the
source to the sink and assigns its vertices to fastest working unit if
possible. If it is not possible, it's split across the fastest devices.

The remaining vertices are assigned based on available resources.



A selection of partitioning heuristics
(multi-objective)
e MITE (Memory, Importance, Traffic, Execution Time):
Objective: mite(v;, dev;) = mem(dev;) ximp(v;, dev;) x traffic(v;) x exec_time(v;, dev;)

Randomly traverse all the vertices and assign to device that
minimize mite.

e DFS (Depth-First search):

Objective: dfs_score(v;, dev;) = traffic(v;) x exec_time(v;, dev,)

Using a depth-first search to traverse the vertices. Vertices are
assigned to the device that minimizes the dfs_score.



Partitioning heuristics
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Figure 2: Overview: partitioning strategies.



Scheduling heuristics

Highest path computation time first (PCT) -scheduling: If the
computation times of the successors (direct or indirect) of a vertex is
high, that vertex is prioritized.

Maximum successor rank first (MSR) -scheduling: Prioritize

vertices that are blocking the computations in other devices, to
avoid idleness of other working nodes.
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The Tensorflow Partitioning and Scheduling
problem

Numerical experiments

e Simulated 50 devices with different computational speed and
transfer times.

e Benchmarked the heuristics on three Tensorflow networks.
e Baselines: HEFT-algorithm (adjusted for Tensorflow), Hash

partitioning & FIFO-scheduling.
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Results
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Some thoughts on their contributions

Having a formal description for the Tensorflow problems is crucial to
properly analyze algorithmes.

The proposed heuristics rely on that the computational speed,
transfer speed between devices etc. are constant and known apriori.
This is often not the case. However, one of their heuristic: CP + FIFO is
both competitive and fairly independent of these parameters.

Would have been interesting to compare their heuristics with the
RL-based approaches.
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Device Placement Optimisation with RL (Google Brain)

- Motivation: Device placement is typically done manually

- Often difficult to make an informed decision
- Tedious work
- Speedup can be significant!

- |dea: Consider device placement as a RL problem rocement R | .
in which the execution time determines the

reward —
- Input: Computational graph (a DAQG) Placement
- Output: One assigned device for each operation

- Challenges:
- Modern neural networks typically comprise thousands of
operations
- Optimization should yield significant speedup to be useful
- Should minimize amount of human assistance [next paper]




Device Placement Optimisation with RL (Google Brain)

- Formal Definition:
Let g be a computational graph with M operations {01, e ,OM}
Assume we have [) devices (GPUs/CPUSs)
A placement P = {PZ; cee pM} assigns exactly one device to each operation
Execution time: 7(P)

- How to define the reward R(P)?
Straightforward: R(P) = r(P)

Not robust enough at the beginning/end of training
Better choice: R(P) = 4/7(P) resp. large constant if placement is infeasible

-  RL Objective:
- Cost function: J(0) = EPNW(’P|g o) [R(P)|G]
Gradient: v, ¢ %Z ) - Vo logp (Pi[G: 0)

i=1

17



Device Placement Optimisation with RL (Google Brain)
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Device Placement Optimisation with RL (Google Brain)

- The need for co-location:

The approach does not scale to large networks comprising thousands of operations
A heuristic needs to be defined that merges (“co-locates”) operations

Instead of assigning one device to one operation, one device is assigned to
multiple operations

Shrinks the sequence length as fewer operations need to be assigned

- Heuristic:

The output of each operations is co-located with its gradients

If the output of some operation X issolely used by some operation’Y both
operations are co-located

Recursively apply rules until they are no longer applicable
Add some manual corrections (e.g. each LSTM cell makes up one group)

19



Device Placement Optimisation with RL (Google Brain)

Distributed Training:

- Asynchronous training
involving one parameter
server and K controllers
each having N workers

- Controller sample
placements P for each
of their workers

- Workers measure the
elapsed time w.rit. to
some placement P

Measurements are
repeated to get more
reliable results

Parameter Server

/T

Controller 1 Controller 2

Controller K
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Device Placement Optimisation with RL (Google Brain)

- Benchmarks

-  RNNLM: Language model
with multiple LSTM layers

- NMT: Machine translation
model with attention
mechanism

- Inception-v3: Image
classification

- Baselines

Single-CPU
Single-GPU
Scotch: Off-the-shelf
combinational optimizer
MinCut: Same as Scotch
but only include GPUs
Expert-designed:
- Put entire model on
GPU (if it fits)
- Co-locate attention
and softmax

21



Device Placement Optimisation with RL (Google Brain)

Tasks ‘ Single-CPU  Single-GPU \ #GPUs Scotch MinCut Expert | RL-based Speedup
RNNLM 6.89 1.57 2 13.43 11.94 3.81 1.57 0.0%
(batch 64) ) ) 4 11.52 10.44 4.46 1.57 0.0%
NMT 2 1419 11.54 4.99 4.04 23.5%
(batch 64) e S -+ 11.23 11.78 4.73 3.92 20.6%
Inception-V3 2621 4.60 2 25.24  22.88 11.22 | 4.60 0.0%
(batch 32) ' ’ 4 23.41 2452 10.65 | 3.85 19.0%

- RNNLM: Model fits on one GPU and RL-based approach recognizes that
- NMT: RL-based approach recognizes that the embeddings can be placed on the
CPU
- Inception-v3:
- 2 GPUs: Places all operations on a single GPU (second GPU idles)
- 4 GPUs: Leverages all four GPUs, yields significant speedup

22
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Device Placement Optimisation with RL (Google Brain)

- Conclusion:

First RL-driven approach to tackle the device placement task
Formulates device placement as sequence-to-sequence
problem in which operations are associated to devices using
LSTMs

Only the execution time and the number of devices are used as
INnputs

ldentifies non-trivial placements

24



A Hierarchical Model for Device Placement (Google Brain)

- Essentially: An iterative update by the same authors
- ldentified weaknesses of first paper:
- Large networks can only be considered when
operations are co-located s prior:
- Decreases granularity which possibly degrades
quality of found placements
- Not end-to-end trainable
- Solution: Define two networks
- Grouper. Maps operations to groups
- Placer: Maps groups to devices 25
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A Hierarchical Model for Device Placement (Google Brain)
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A Hierarchical Model for Device Placement (Google Brain)

Tasks CPU GPU | #GPUs Human Scotch MinCut Hierarchical Runtime
Only  Only Expert Planner Reduction

Inception-V3 0.61 0.15 2 0.15 0.93 0.82 0.13 16.3%
ResNet - 1.18 2 1.18 6.27 2.92 1.18 0%
RNNLM 6.89 1.57 2 1.57 5.62 5.21 1.57 0%

NMT (2-layer) | 6.46 OOM 2 2.13 321 5.34 0.84 60.6%

NMT (4-layer) | 10.68 OOM 4 3.64 11.18 11.63 1.69 53.7%

NMT (8-layer) | 11.52 OOM 8 3.88 17.85 19.01 4.07 -4.9%

- Authors argue that the new model can't be compared with the previous one because

the hardware is different.

- If we measure the speedup w.r.t the best heuristic (a relative comparison), the new
method performs significantly better than the old one (60% on NMT)
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Device Placement Optimisation with RL (Google Brain)

- Is it beneficial to optimize device placements?
- Could be faster to just train a model naively and
thereby saving the runtime optimization costs...
- WMT “14: Machine translation corpus for EN-DE
- New model reduces runtime/step by 46.7%
- Optimizing device placement before saves 265 GPU
hours
- Takeaway: It makes sense to do the optimization (at
least for WMT ‘14)
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Device Placement Optimisation with RL (Google Brain)

- Is the Grouper necessary?
- Ablation study: Replace groupings with randomized

groupings
Benchmark Best Median Worst | Improvement with
Hierarchical Planner

Inception-V3 | 0.22 0.51 0.65 40.9%

ResNet 1.18 1.18 1.18 0%

RNNLM 1.57 1.57 1.57 0%
NMT (2-layer) | 2.25 3.72 4.45 62.7%
NMT (4-layer) | 3.20 342 6.91 47.2%
NMT (8-layer) | 6.35 6.86 71:23 35.9%
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Device Placement Optimisation with RL (Google Brain)

- Conclusion:
- Both papers tackle the device placement problem using
policy gradients
- In order to be able to optimize large networks, the
operations need to be grouped first to address
performance issues/vanishing gradients
- First paper uses (recursive) heuristics + human input
- Second paper uses a Grouper network
- Optimization reduces overall training time on WMT'14
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Placeto: Learning Generalizable
Device Placement Algorithms for
Distributed Machine Learning

Addanki, Ravichandra, et al. "Placeto: Learning generalizable device placement
algorithms for distributed machine learning." arXiv preprint arXiv:1906.08879 (2019).

33rd Conference on Neural Information Processing Systems (NeurlPS 2019),
Vancouver, Canada.
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Motivation

e Previous RL-based device placement methods are promising
but require significant amount of retraining to find a good

placement for each computation graph due to:
o Not generalizable device placement policies (i.e., learn policy only for a
single computation graph)
o Low training efficiency

e Placeto incorporates two key ideas:

o Find a sequence of iterative placement improvements (simpler to learn)
o Use graph embeddings

32



Problem Formulation

e |/ : set of atomic computational operations (heurons)

e | :set of communication edges (data dependencies)

e G(V,E):computation graph (DNN)

e D={dd,,,dy}: set of m devices (CPU and/or GPU)

e -1/ —» D:amapping that assigns a device to each op, (a
placement)

e Goal: minimize the execution time (one step training
time) of the placement

33



Iterative Placement (MDP Formulation)

e Let (G beafamily of computation graphs, each node vin an
observation state of the Markov decision process (MDP) has the

following features:

(@)

o O O O

Estimated run time of v

Total size of tensors output by v

The current device placement of v

A flag indicating whether v has been “visited” before

A flag indicating whether is the “current” node for which the placement to be

updated.

e At the initial state S

(@)

@)

(@)

Nodes are assigned to device arbitrarily

The visit flags are all O

An arbitrary node is selected as the current node
34



Iterative Placement (MDP Formulation), Cont.

e Atastep t inthe MDP, the agent selects an action to update the placement
for the current node v in state s;. The MDP then transitions to a new state
St+1 In which v is marked as visited and an unvisited node is selected as the
new current node.

Action a: Action a,: Action aj: Action ay:
Device 2 Device 1 Device 2 Device 2
ﬁ ﬁ ﬁ ﬁ EEn #
Step t=0 Step t=1 Step t=2 Step t=3 End of episode

e The episode ends in |V | steps when devices has been assigned to all nodes.



Iterative Placement (MDP Formulation), Cont.

e Two approaches for assigning rewards in the MDP:
o O for intermediate step, the negative run time of the final placement at the final
step
o Assigning an intermediate reward Ty = T(St+1) — ‘r(st)
e Intermediate rewards:
o Improve credit assignment in long training episodes (e.g., large NN) and reduce
variance of the policy gradient estimates
o Training with intermediate rewards is mode expensive.

e To avoid generating placement that exceeds the memory limit on
device, a penalty in the reward proportional to the peak memory
utilization if it is above a certain threshold M.

36



Placeto Architecture

e Placeto learns placement policies by directly parameterizing the
MDP policy using a neural network.

e At each steptofthe MDP, the policy network takes the graph
configuration in state s; as input, and outputs an updated
placement for the t-th node.

State s, RL agent Next state s,.4
Device 1 Feliey
—>

Graph :

neural —> n:f\ll:/coyrk _

Current network Device 2 Sample
node i X-- /22 | New
placement

Reward r; = Runtime(s,,4) - Runtime(s;)
B % )}« 37

Runtime(s,) Runtime(s;.4)



Placeto Architecture, Cont.

e Need to encode the graph-structured information of the state as a
real-valued vector.

e Placeto achieves this vectorization via a graph embedding procedure.

Parent ---. 3 R .
(a) Top-down (b) groups” \‘ (C) Parent { + \ (d)
message ; groups | ]
passin 7 P i 3 \-.___._._._______ _______
Op group feature: Child ',"’ o\
(total_runtime, ! groups i O + O :
output_tensor_size, i Parallel LY it
current_placement, ! groups PR 5
is_node_current, i Parallel” i
is_node_done) ! O"'O +O
Bottom-up groups \
message N W= R
passing Child~,_ ) Current
groups .= node
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Results

Placement runtime Training time Improvement
(sec) (# placements sampled)
CPU Single RNN- RNN- Runtime Speedup
Model oy GPU #GPUs  Expert  Scotch  Placeto based Placeto based Reduction factor
; . o § B 2 1.28 1.54 1.18 117 1.6 K 7.8 K -0.85% 4.8 x
tion- : 2
e 4 115 174 1.13 119 | 58K 358K 5% 6.1 x
— o i 2 OOM OOM 2.32 2,35 204K 73K 1.3 % 3.5 X
' 4 OOM OOM 2.63 3.15 94 K 51.7K 16.5 % 0.55 x
2 0.86 1.28 0.86 0.89 35K 163K 3.4% 4.7 x
NASNet 37:5 1.28
4 0.84 1.22 0.74 0.76 29 K 37K 2.6% 1.3 x

Table 1: Running times of placements found by Placeto compared with RNN-based approach [10], Scotch and
human-expert baseline. The number of measurements needed to find the best placements for Placeto and the
RNN-based are also shown (K stands for kilo). Reported runtimes are measured on real hardware. Runtime
reductions and speedup factors are calculated with respect to the RNN-based approach. Lower runtimes and
lower training times are better. OOM: Out of Memory. For NMT model, the number of LSTM layers is chosen

based on the number of GPUs.
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Results, Cont.
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Figure 5: CDFs of runtime of placements found by the different schemes for test graphs from (a), (d) nmt (b),
(e) ptb and (c), (f) cifarl0 datasets. Top row of figures ((a), (b), (c)) correspond to Placeto and bottom row ((d),
(e), (f)) to RNN-based approach. Placeto Zero-Shot performs almost on par with fully optimized schemes like
Placeto Optimized and RNN Optimized even without any re-training. In contrast, RNN Zero-Shot performs
much worse and only slightly better than a randomly initialized policy used in Random scheme.



Placeto Summary

Pros

Iterative placement
IMmprovement policy
Generalizability

More efficient training and
can find better placement
compared to the chosen
baseline

Simulator to improve
training speed

Code available online

cons

Generalizability within the
same family of computation
graphs

Policy gradient training

Still need grouping,
otherwise can not scale to
large computation graphs
Spotlight is mentioned but
not included in the baseline
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A Single-Shot Generalized Device
Placement for Large Dataflow Graphs
(SGDP)

Zhou, Yanqji, et al. "A Single-Shot Generalized Device Placement for Large Dataflow
Graphs." IEEE Micro 40.5 (2020): 26-36
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Motivation

e Previous RL-based device placement methods are promising but

are.

o Computationally expensive
o Unable to handle large graphs (more than 50,000 nodes)
o Do not generalize well to unseen computation graphs

e SGDP: an efficient single-shot, generalized deep RL method based
on a scalable sequential attention mechanism over a graph neural
network that is transferable to new graphs.

43



Problem Formulation

e |/ : set of atomic computational operations (heurons)

e | :set of communication edges (data dependencies)

e G(V,E):computation graph (DNN)

e D={dd,,,dy}: set of m devices (CPU and/or GPU)

e -1/ —» D:amapping that assigns a device to each op, (a
placement)

e Goal: minimize the execution time (one step training
time) of the placement

44



SGDP: End-to-End Placement Policy

The policy network of SGDP consists:

o Agraph embedding network (learns the graphical representation of any dataflow graph)
o A placement network (learns a placement strategy over the given graph embeddings)

The two components in the policy network are jointly trained in an end-to-end
fashion.

The RL objective in SGDP is defined to simultaneously reduce the expected
runtime of the placements over a set of N computation graph.

SGDP use Proximal Policy Optimization (PPO) to optimize the objective to
improve efficiency.

45



SGDP: End-to-End Placement Pollcy, Cont.

: /// AN /, \\\ Nxa
Adcono Mattx | | Grapnsace | " RecurentAttenon | [
' ; Nxh ' Policy Network lACtIOI’]S
Sparse i : M
. ‘ | Mask
Representation }v: Node Features: || : Segment 1 Segment2 :
i Ops Type ! ‘ Q 3
: Output Shape | g , -5
Input Ops D ¢ > | 3 2
e 1 ! : 9
| Concatenated ! | —~ Aggregator 1! : : S
. Nodes Features | — Aggregator 2' Node Embedd'”gs ) p -
O

Mask
Attention

Figure 1. Overview of SGDP: An end-to-end placement network that combines graph embedding and
sequential attention. N: Number of nodes. h: Hidden size. d: Number of devices.
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Graph Embedding Network

e SGDP uses Graph Neural Networks (GNNs) to capture the topological information
in the dataflow graph

e GraphSAGE is an inductive framework that leverages node attribute information to
efficiently generate representations on previously unseen data.

e SGDP adopts the feature aggregation scheme in GraphSAGE to model the
dependencies between the operations and build a general, end-to-end device
placement method for a wide set of dataflow graphs.

e Nodes and edges in the dataflow graph are represented as the concatenation of their
meta features (e.g., operation type, output shape, adjacent node ids) and are further
encoded by the graph embedding network into a trainable representation.
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Placement Networks

e SGDP uses a transformer-based attentive network to generate

operation placements in an end-to-end fashion.
o Remove the positional embedding in the original transformer (graph embedding
already has spatial information, prevent overfitting on node identifications.
o Use segment-level recurrence (capture long-term dependencies efficiently)
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Results

5 SGDP-one HP METIS HDP Runtime speedup over HP / Search speedup over

Model (#devices) = &) @& is) HDP HDP
2layer RNNLM (2) 0.173 0.192 | 0355 0.191 9.9% /9.4% 2.95%
4layer RNNLM (4) 0.210 0239 | 0503 0.251 13.8% / 16.3% 1.76x
8-layer RNNLM (8) 0.320 0332 | ooMm 0.764 3.8% /58.1% 27.8x
2layer GNMT (2) 0.301 0384 | 0.344 0.327 27.6% / 14.3% 30x

4layer GNMT (4) 0.350 0469 | 0.466 0.432 34% / 23.4% 58.8x
8-layer GNMT (8) 0.440 0562 | ooM 0.693 21.7% / 36.5% 7.35%
?;)ayer Trnsformer. 0.223 0268 | 037 0.262 20.1% / 17.4% 40x

‘al)aye’ BB 0.230 0.27 00M 0.259 17.4% / 12.6% 26.7x
?;)aye' Trmstonmerd. 0.350 0.46 00M 0.425 23.9% / 16.7% 16.7x
Inception (2) b32 0.229 0312 | ooMm 0.301 26.6% / 23.9% 13.5%
Inception (2) b64 0.423 0731 | oom 0.498 42.1% / 29.3% 21.0x
AmoebaNet (4) 0.394 044 | 0.426 0.418 26.1% /6.1% 58.8x
?;)tad‘ 18-layer WaveNet 0.317 0376 | ooM | 0.354 18.6% / 11.7% 6.67x
‘(‘Bmk Ab-tiyer Waveiet 0.659 0988 | oom | 0721 50% / 9.4% 20x

GEOMEAN . . s 2 20.5% / 18.2% 15x

Table 1. Runtime comparison
between SGDP-one, human
expert, TensorFlow METIS, and
HDP on six graphs (RNNLM,
GNMT, Transformer-XL,
Inception, AmoebaNet, and
WaveNet). Search speedup is
the policy network training
time speedup compared to
HDP (reported values are
averages of six runs).
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Results, Cont.

Scalability Analysis

SGDP demonstrate
superhuman performance on
large graphs such as 8-layer
GNMT (21.7%/36.5% better than
HP/HDP) and 8-layer RNNLM
(3.8%/58.1% better than HP/
HDP).

For all of the related SoTA work,
Placeto and REGAL do not
provide any results on 8-layer
RNNLM or 8-layer GNMT (more
than 50 000 nodes). HDP
reports inferior performance on
8-layer RNNLM and 8-layer
GNMT than human placement.

Generalization

e SGDP-zeroshot: directly runs inference on the
pre-trained SGDP model.

e SGDP-finetune: further trains the pre-trained
SGDP model for an additional 50 training steps.

e We find that:

o

SGDP-finetune almost matches the
performance of SGDP-one, degrading the
placement runtime on average by only 1.2%
compared to SGDP-one and outperforms
both human placement and HDP
significantly.

SGDP-zeroshot completely eliminates the
training for the target unseen graphs, while
being only 3.7% worse on average than
SGDP-one and being over 10% better than
human placement.
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SGDP Summary

Pros

Generalizability to any
unseen graphs

More efficient training with
PPO

End-to-end placement policy

Cons

Writing can be better? e.g., using
term with defining, GDP and
SGDP are used interchangeably.
Not comparing to better
baselines (Spotlight, Placeto).
What does single-shot mean?
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Spotlight: Optimizing Device
Placement for Training

Deep Neural Networks

(Gao et al. 2018)
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The main idea

They viewed the partition
problem as a Markov Decision
Process:

That is, each operation (i.e. a
vertex of the graph) is assigned
to the working units
sequentially, based on current
state.

GPUGPU| T e
— @ it
arujoru]_dl 3& Stage 0

afi g
Update

HERH R Tralnlngt-me

’% g% s'i'a’::L

Figure 2. The state tree of a device placement MDP.
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Some preliminaries

0, n<N

e Reward function: r(sn)={ E-R neN

e State-action value function:  Q.(sm,an) = Efa,....an_s3erlr(sn)]

e Expected reward: 7™ =Ea,..an-1}~rlr(sn)]

77(77.,) = E{ao ..... an—1}~m'! [Z q/(a’n|sn)Q7r’ (Sna an)]

an.

In classical policy ascent, the first representation of the objective is
used, which gives the updates:

1 _
6'=0+ D Vologq(an|sa)- (R~ R)

Ay ~VTT
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Proximal Policy Optimization

Rather than using policy gradient algorithms to update the
parameters, they suggested a proximal policy optimization, which is
uses the 2nd representation of the expected reward.:

77( ) E{ao ..... An—1 ! [Zq an|3n)Q7r (Sn an)]
Fr (7‘(") — E{ao ..... An_ 1}""’"[2(1 anlsn)Qw(sn an)]

The latter constitutes a lower bou nd of the expected reward via:

(') > Fr(n') — €1 — 2ean DRY(w||7").
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Proximal Policy Optimization

Rather than maximizing the expected reward, the lower bound is
iteratively maximized. The lower bound is approximated as:

mox Y (22— R) - Dl
n—0 n|on
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The Spotlight algorithm

Algorithm 1 Spotlight algorithm

1: Input: The set of available devices: {d1, ds, ...,dn}
2: Qutput: A near-optimal device placement: a*

3: Initialize 7 as uniform distributions; 8 = 1; min = co
4: for iteration=1, 2, ..., K do

55 a=[;G=0
6 forn=0,1,..., N —1do
7: Sample g(an|sy) to get ay, € {d1,da, ...,dpn}
8 a.append(ay)
9:  end for
10:  Reconfigure the device placement of the DNN in
TensorFlow as a = [ag, a1, ...,an—_1]
11:  Train the DNN for ten steps
12:  Record the training time R
13:  if R < min then
14: a*=a
15: min=R
16: endif
17: forn:N’—l,N—2,...,0d0
18: Gn = (51((::|ss:>) (R - R) - ,BDKL((I”q/)
19: G=G+G,
20:  end for
21:  Maximize $ w.r.t. 7’ with SGA for ten steps
22: w=n'
23: end for
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The Spotlight algorithm

Algorithm 1 Spotlight algorithm

1: Input: The set of available devices: {d1, ds, ...,dn}
2: Qutput: A near-optimal device placement: a*

3: Initialize 7 as uniform distributions; 8 = 1; min = co
4: for iteration=1, 2, ..., K do
. . 5 a= [], G = 0
Simulate actions from 6 form=0.1...N —1ldo
current po“cy 7: Sample g(a,|sy) to get a,, € {d1,d2, ...,dm}
8: a.append(a,)
9 end for

10:  Reconfigure the device placement of the DNN in
TensorFlow as a = [ag, a1, ...,an—_1]

11:  Train the DNN for ten steps

12:  Record the training time R

13:  if R < min then

14: a*=a
15: min=R
16:  end if

17: forn:N/—l,N—2,...,0d0
18: G = Llenlsn) (B — R) — BDk1(qllg")

= 4(an|5n>
19: G=G+G,
20:  end for
21:  Maximize $ w.r.t. 7’ with SGA for ten steps

2: w=m7'
23: end for




The Spotlight algorithm

Algorithm 1 Spotlight algorithm
1: Input: The set of available devices: {d1, ds, ...,dn}
2: Qutput: A near-optimal device placement: a*
3: Initialize 7 as uniform distributions; 8 = 1; min = co
4: for iteration=1, 2, ..., K do

5 a=[;G=0
6 forn=0,1,..., N —1do
7: Sample g(an|sy) to get ay, € {d1,da, ...,dpn}
8 a.append(a,)
. .. . 9: end for
Estimate the traini ng time 10:  Reconfigure the device placement of the DNN in
H TensorFlow as a = [ag, a1, ...,an—_1]
C?f'the current aCtlor.]S' If 11:  Train the DNN for ten steps
it's better that previous 12:  Record the training time R
iterates, then update the .
currently best action. 155 min=R
16: endif

17: forn:N’—l,N—2,...,0d0

18: Gn = (51((::|ss:>) (R - R) - ,BDKL((I”q/)
19: G=G+G,

20:  end for
21:  Maximize
2: w=m7'

23: end for

G

% w.rt. 7’ with SGA for ten steps

59



The Spotlight algorithm

Compute the objective
function and maximize
w.r.t the new policies.

Algorithm 1 Spotlight algorithm
1: Input: The set of available devices: {d1, ds, ...,dn}
2: Qutput: A near-optimal device placement: a*
3: Initialize 7 as uniform distributions; 8 = 1; min = co
4: for iteration=1, 2, ..., K do

55 a=[;G=0

6: forn=0,1,...,N—1do

7: Sample g(an|sy) to get ay, € {d1,da, ...,dpn}
8 a.append(ay)

9: end for

10:  Reconfigure the device placement of the DNN in
TensorFlow as a = [ag, a1, ...,an—_1]

11:  Train the DNN for ten steps

12:  Record the training time R

13:  if R < min then

14: a*=a
15: min=R
16:  end if

17: forn=N-1,N-2,...,0do
18: G = Llenlsn) (B — R) — BDk1(qllg")

= “qlanlsn)
19: G=G+G,
20:  end for
G

21:  Maximize % w.r.t. 7’ with SGA for ten steps
22: w=n'

23: end for

N
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Model of the placement policy: RNN with
LSTM-cells

Qo ar - a Sample

bt

(a0) a(ar) - a(an) Policy

Attention

LSTM layer
Vocabulary
| R

t t t
Name 1: convibias [ |F—{ > = = |—> > > -~ JLSTM layer

Name 2: conv2/add
Name 3: I/mul
2 eSﬂlpoo . Name1 Name2 - NameN Input

Figure 3. Using a sequence-to-sequence recurrent neural network
to represent the placement policy.

Rather than feeding all operations into the net, they
use a operation vocabulary to group them into
larger ops. This ensures that related operations are
co-located.



Results

T 3.0 i
=== Single GPU 3.0
69351 — spotlight avg ==~ GRL min - S:‘(f‘tlfght -=- Async towers
%030/ R — GRLavg -+ Single GPU 25 R sdl = Spotlight
g == Spotlight min —-= Metis ' == Synctowers
5025 @ "
o 3 2.0 8 2.0
€020 815 5
g = =150
0.15
% 1.0 1.01 \\
£0.10 = posEs
Z 005 95 30 60 90 10 %% 25 s0 75 100
o 0 100 200 300 400 500 CNN Training time (minute) CNN Training time (minute)
RNN training time (minute) (a) 2 GPUs and 1 CPU (b) 4 GPUs and 1 CPU

(a) 4 GPUs and 1 CPU

2o0.40 —— e ,

S potlight avg GRL min

8035 — GRLavg =+ Single GPU

‘o == Spotlight min —-= Metis

£ 0.30 Table 1. Per-step training time (in seconds) of placements given
2025 by the baselines for the environment with 4 GPUs. Experts place
E 0.20 each LSTM layer on one GPU.

5 Models | Experts | Metis | GRL | Spotlight

I

| e — RNNLM | 3.86 | 6.12 | 3.15 | 227

=

2010 R et s NMT 5.54 10.50 | 4.74 3.62

=

LZ) 0es 0 100 200 300 400 500

RNN training time (minute)
(b) 2 GPUs and 1 CPU



Clever partitions that Spotlight finds

GPUo GPUo | i
CPU CPU

GPU;, GPU;, H

L L I

0 5 10 15 time/ms
(a) Single GPU

ms

(d) Synchronous towers

0 5 10 15 ms

(b) GRL
cPU
GPU,
GPU,
GPU,
GPU,
' 5 10 'ms

(e) Spotlight

GPU, M

GPU;, %
0 5 10

(c) Spotlight

>
ms

B Convolution B Pool (grad)

B Pool Norm (grad)
[] Norm [ input

B Full connection B Update
B Full connection (grad)
Convolution (grad)
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Some thoughts

Applying proximal policy optimization to the partitioning problem is
both very innovative, and a seemly powerful technigue.

The derived properties are based the theoretical lower bound of the
expected reward:

maxF (7") — €1 — 2ean DRF (w||").

While in their implementation, the approximation is considered:

max— Z [ an|sn R) — BDxr(ql|d")]

an|sn

Beta is treated as a hyperpara meter (set to 1). Are there tighter lower
bounds to exploit?
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.. yet another comment

e Their grouping strategy is both intuitive and simple, but might be
suboptimal. Would have been interesting to see the effect of
augmenting Spotlight with a model-based grouper (e.g. one similar
to that of the Hierarchical model considered in this module).
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