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The Tensorflow Partitioning 
and Scheduling problem: 
It’s the critical path!
(Mayer et al 2017)
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Some background
Distributed graph processing algorithms via partitioning:

Main objective: Minimize traffic between devices while 
preserving load balance. This is in fact NP-hard, and often 
approach with heuristics, e.g GraphH, GraphX etc.
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Some background

● The computations associated with Tensorflow is also a Graph. Yet 
different than those of graph partitioning. It has some additional 
structure with data flows between vertex sources and sinks.

● Mayer et al. suggested a formal description of the tensorflow 
partitioning and scheduling problem, and used that to establish its 
NP-completeness.
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Tensorflow = Partitioning + Scheduling

● Tensorflow involves both partitioning of the DAG, and local 
scheduling on the devices.

● Since solving the problem exactly is intractable, heuristics are 
preferred. The authors suggested solving the partitioning problem 
and the scheduling problem sequentially, and proposed a few 
heuristics for these subproblems.
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The TF Problem
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A selection of partitioning heuristics (single 
objective)

● CP (Critical Path): Finds the longest path in the DAG from the 
source to the sink and assigns its vertices to fastest working unit if 
possible. If it is not possible, it’s split across the fastest devices.

The remaining vertices are assigned based on available resources.
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A selection of partitioning heuristics 
(multi-objective)
● MITE (Memory, Importance, Traffic, Execution Time): 

Objective: 

Randomly traverse all the vertices and assign to device that 
minimize mite.

● DFS (Depth-First search):

Objective: 

Using a depth-first search to traverse the vertices. Vertices are 
assigned to the device that minimizes the dfs_score. 9



Partitioning heuristics
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Scheduling heuristics
● Highest path computation time first (PCT) -scheduling: If the 

computation times of the successors (direct or indirect) of a vertex is 
high, that vertex is prioritized.

● Maximum successor rank first (MSR) -scheduling: Prioritize 
vertices that are blocking the computations in other devices, to 
avoid idleness of other working nodes.
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The Tensorflow Partitioning and Scheduling 
problem
Numerical experiments

● Simulated 50 devices with different computational speed and 
transfer times.

● Benchmarked the heuristics on three Tensorflow networks.

● Baselines: HEFT-algorithm (adjusted for Tensorflow), Hash 
partitioning & FIFO-scheduling.
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Results
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Results
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Some thoughts on their contributions

● Having a formal description for the Tensorflow problems is crucial to 
properly analyze algorithms.

● The proposed heuristics rely on that the computational speed, 
transfer speed between devices etc.  are constant and known apriori. 
This is often not the case. However, one of their heuristic: CP + FIFO is 
both competitive and fairly independent of these parameters.

● Would have been interesting to compare their heuristics with the 
RL-based approaches.
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Device Placement Optimisation with RL (Google Brain)

- Motivation: Device placement is typically done manually
- Often difficult to make an informed decision
- Tedious work
- Speedup can be significant!

- Idea: Consider device placement as a RL problem 
in which the execution time determines the 
reward

- Input: Computational graph  (a DAG)
- Output: One assigned device for each operation 

- Challenges:
- Modern neural networks typically comprise thousands of 

operations
- Optimization should yield significant speedup to be useful
- Should minimize amount of human assistance [next paper]
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Device Placement Optimisation with RL (Google Brain)

- Formal Definition:
- Let    be a computational graph with   operations
- Assume we have devices (GPUs/CPUs)
- A placement  assigns exactly one device to each operation
- Execution time: 

- How to define the reward       ?  
- Straightforward:

- Not robust enough at the beginning/end of training
- Better choice: resp. large constant if placement is infeasible

- RL Objective: 
- Cost function: 
- Gradient:  
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Device Placement Optimisation with RL (Google Brain)

Matmul, 
Conv2d 
etc.

Encode 
preceding/subsequent 
operations

Which 
dimensions 
does the output 
have?

Same length as input

Attentional LSTM
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Device Placement Optimisation with RL (Google Brain)

- The need for co-location:
- The approach does not scale to large networks comprising thousands of operations
- A heuristic needs to be defined that merges (“co-locates”) operations
- Instead of assigning one device to one operation, one device is assigned to 

multiple operations
- Shrinks the sequence length as fewer operations need to be assigned 

- Heuristic:
- The output of each operations is co-located with its gradients
- If the output of some operation is solely used by some operation both 

operations are co-located
- Recursively apply rules until they are no longer applicable
- Add some manual corrections (e.g. each LSTM cell makes up one group)  
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Device Placement Optimisation with RL (Google Brain)

- Distributed Training:
- Asynchronous training 

involving one parameter 
server and     controllers 
each having workers

- Controller sample 
placements for each 
of their workers 

- Workers measure the 
elapsed time w.r.t. to 
some placement 

- Measurements are 
repeated to get more 
reliable results 20



Device Placement Optimisation with RL (Google Brain)

- Benchmarks
- RNNLM: Language model 

with multiple LSTM layers
- NMT: Machine translation 

model with attention 
mechanism

- Inception-v3: Image 
classification

- Baselines
- Single-CPU
- Single-GPU
- Scotch: Off-the-shelf 

combinational optimizer
- MinCut: Same as Scotch 

but only include GPUs
- Expert-designed:

- Put entire model on 
GPU (if it fits)

- Co-locate attention 
and softmax 21



Device Placement Optimisation with RL (Google Brain)

- RNNLM: Model fits on one GPU and RL-based approach recognizes that
- NMT: RL-based approach recognizes that the embeddings can be placed on the 

CPU
- Inception-v3: 

- 2 GPUs: Places all operations on a single GPU (second GPU idles)
- 4 GPUs: Leverages all four GPUs, yields significant speedup
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Neural MT:

Inception-v3:
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Device Placement Optimisation with RL (Google Brain)

- Conclusion:
- First RL-driven approach to tackle the device placement task
- Formulates device placement as sequence-to-sequence 

problem in which operations are associated to devices using 
LSTMs

- Only the execution time and the number of devices are used as 
inputs

- Identifies non-trivial placements
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A Hierarchical Model for Device Placement (Google Brain)

- Essentially: An iterative update by the same authors
- Identified weaknesses of first paper:

- Large networks can only be considered when 
operations are co-located a priori

- Decreases granularity which possibly degrades 
quality of found placements

- Not end-to-end trainable
- Solution: Define two networks

- Grouper: Maps operations to groups 
- Placer: Maps groups to devices 25



A Hierarchical Model for Device Placement (Google Brain)

Same as in last paper
Time is not modeled!

Predicts index of group 
for each operation (in 
isolation)
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A Hierarchical Model for Device Placement (Google Brain)

- Authors argue that the new model can’t be compared with the previous one because 
the hardware is different.

- If we measure the speedup w.r.t the best heuristic (a relative comparison), the new 
method performs significantly better than the old one (60% on NMT)
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Device Placement Optimisation with RL (Google Brain)

- Is it beneficial to optimize device placements?
- Could be faster to just train a model naively and 

thereby saving the runtime optimization costs…
- WMT ‘14: Machine translation corpus for EN-DE

- New model reduces runtime/step by 46.7% 
- Optimizing device placement before saves 265 GPU 

hours
- Takeaway: It makes sense to do the optimization (at 

least for WMT ‘14)
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Device Placement Optimisation with RL (Google Brain)

- Is the Grouper necessary?
- Ablation study: Replace groupings with randomized 

groupings
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Device Placement Optimisation with RL (Google Brain)

- Conclusion:
- Both papers tackle the device placement problem using 

policy gradients
- In order to be able to optimize large networks, the 

operations need to be grouped first to address 
performance issues/vanishing gradients
- First paper uses (recursive) heuristics + human input
- Second paper uses a Grouper network

- Optimization reduces overall training time on WMT’14
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Placeto: Learning Generalizable 
Device Placement Algorithms for 
Distributed Machine Learning
Addanki, Ravichandra, et al. "Placeto: Learning generalizable device placement 
algorithms for distributed machine learning." arXiv preprint arXiv:1906.08879 (2019).

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), 
Vancouver, Canada.
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Motivation

● Previous RL-based device placement methods are promising 
but require significant amount of retraining to find a good 
placement for each computation graph due to:
○ Not generalizable device placement policies (i.e., learn policy only for a 

single computation graph)
○ Low training efficiency

● Placeto incorporates two key ideas:
○ Find a sequence of iterative placement improvements (simpler to learn）
○ Use graph embeddings 
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Problem Formulation

●    : set of atomic computational operations (neurons)
●    : set of communication edges (data dependencies)
●             : computation graph (DNN)
●                                : set of 𝑚 devices (CPU and/or GPU)
●                   : a mapping that assigns a device to each op, (a 

placement)
● Goal: minimize the execution time (one step training 

time) of the placement
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Iterative Placement (MDP Formulation)

● Let      be a family of computation graphs, each node    in an 
observation state of the Markov decision process (MDP) has the 
following features:

○ Estimated run time of 𝑣
○ Total size of tensors output by 𝑣
○ The current device placement of 𝑣
○ A flag indicating whether 𝑣 has been “visited” before
○ A flag indicating whether  is the “current” node for which the placement to be 

updated.

● At the initial state 
○ Nodes are assigned to device arbitrarily
○ The visit flags are all 0
○ An arbitrary node is selected as the current node
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Iterative Placement (MDP Formulation), Cont.

● At a step    in the MDP, the agent selects an action to update the placement 
for the current node    in state     . The MDP then transitions to a new state   
a     in which 𝑣 is marked as visited and an unvisited node is selected as the 
new current node.

●
●
●
●
●
●
● The episode ends in      steps when devices has been assigned to all nodes.
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Iterative Placement (MDP Formulation), Cont.

● Two approaches for assigning rewards in the MDP:
○ 0 for intermediate step, the negative run time of the final placement at the final 

step
○ Assigning an intermediate reward 

● Intermediate rewards:
○ Improve credit assignment in long training episodes (e.g., large NN) and reduce 

variance of the policy gradient estimates
○ Training with intermediate rewards is mode expensive.

● To avoid generating placement that exceeds the memory limit on 
device, a penalty in the reward proportional to the peak memory 
utilization if it is above a certain threshold M.
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Placeto Architecture
● Placeto learns placement policies by directly parameterizing the 

MDP policy using a neural network.
● At each step   of the MDP, the policy network takes the graph 

configuration in state      as input, and outputs an updated 
placement for the t-th node.
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Placeto Architecture, Cont.

● Need to encode the graph-structured information of the state as a 
real-valued vector. 

● Placeto achieves this vectorization via a graph embedding procedure.
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Results
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Results, Cont.
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Placeto Summary

Pros
● Iterative placement 

improvement policy
● Generalizability
● More efficient training and 

can find better placement 
compared to the chosen 
baseline

● Simulator to improve 
training speed

● Code available online

Cons
● Generalizability within the 

same family of computation 
graphs

● Policy gradient training
● Still need grouping, 

otherwise can not scale to 
large computation graphs

● Spotlight is mentioned but 
not included in the baseline
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A Single-Shot Generalized Device 
Placement for Large Dataflow Graphs 
(SGDP)
Zhou, Yanqi, et al. "A Single-Shot Generalized Device Placement for Large Dataflow 
Graphs." IEEE Micro 40.5 (2020): 26-36
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Motivation

● Previous RL-based device placement methods are promising but 
are:

○ Computationally expensive
○ Unable to handle large graphs (more than 50,000 nodes)
○ Do not generalize well to unseen computation graphs

● SGDP: an efficient single-shot, generalized deep RL method based 
on a scalable sequential attention mechanism over a graph neural 
network that is transferable to new graphs.

43



Problem Formulation

●    : set of atomic computational operations (neurons)
●    : set of communication edges (data dependencies)
●             : computation graph (DNN)
●                                : set of 𝑚 devices (CPU and/or GPU)
●                   : a mapping that assigns a device to each op, (a 

placement)
● Goal: minimize the execution time (one step training 

time) of the placement
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SGDP: End-to-End Placement Policy
● The policy network of SGDP consists:

○ A graph embedding network (learns the graphical representation of any dataflow graph)
○ A placement network (learns a placement strategy over the given graph embeddings)

● The two components in the policy network are jointly trained in an end-to-end 
fashion.

● The RL objective in SGDP is defined to simultaneously reduce the expected 
runtime of the placements over a set of N computation graph.

● SGDP use Proximal Policy Optimization (PPO) to optimize the objective to 
improve efficiency.
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SGDP: End-to-End Placement Policy, Cont.
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Graph Embedding Network

● SGDP uses Graph Neural Networks (GNNs) to capture the topological information 
in the dataflow graph

● GraphSAGE is an inductive framework that leverages node attribute information to 
efficiently generate representations on previously unseen data.

● SGDP adopts the feature aggregation scheme in GraphSAGE to model the 
dependencies between the operations and build a general, end-to-end device 
placement method for a wide set of dataflow graphs.

● Nodes and edges in the dataflow graph are represented as the concatenation of their 
meta features (e.g., operation type, output shape, adjacent node ids) and are further 
encoded by the graph embedding network into a trainable representation. 
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Placement Networks

● SGDP uses a transformer-based attentive network to generate 
operation placements in an end-to-end fashion.

○ Remove the positional embedding in the original transformer (graph embedding 
already has spatial information, prevent overfitting on node identifications.

○ Use segment-level recurrence (capture long-term dependencies efficiently)
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Results

Table 1. Runtime comparison 
between SGDP-one, human 

expert, TensorFlow METIS, and 
HDP on six graphs (RNNLM, 

GNMT, Transformer-XL, 
Inception, AmoebaNet, and 

WaveNet). Search speedup is 
the policy network training 
time speedup compared to 

HDP (reported values are 
averages of six runs).
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Results, Cont.

Scalability Analysis

● SGDP demonstrate 
superhuman performance on 
large graphs such as 8-layer 
GNMT (21.7%/36.5% better than 
HP/HDP) and 8-layer RNNLM 
(3.8%/58.1% better than HP/ 
HDP). 

● For all of the related SoTA work, 
Placeto and REGAL do not 
provide any results on 8-layer 
RNNLM or 8-layer GNMT (more 
than 50 000 nodes). HDP 
reports inferior performance on 
8-layer RNNLM and 8-layer 
GNMT than human placement.

Generalization

● SGDP-zeroshot: directly runs inference on the 
pre-trained SGDP model.

● SGDP-finetune: further trains the pre-trained 
SGDP model for an additional 50 training steps. 

● We find that:
○ SGDP-finetune almost matches the 

performance of SGDP-one, degrading the 
placement runtime on average by only 1.2% 
compared to SGDP-one and outperforms 
both human placement and HDP 
significantly. 

○ SGDP-zeroshot completely eliminates the 
training for the target unseen graphs, while 
being only 3.7% worse on average than 
SGDP-one and being over 10% better than 
human placement. 
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SGDP Summary
Pros
● Generalizability to any 

unseen graphs
● More efficient training with 

PPO
● End-to-end placement policy

Cons
● Writing can be better? e.g., using 

term with defining, GDP and 
SGDP are used interchangeably.

● Not comparing to better 
baselines (Spotlight, Placeto).

● What does single-shot mean?
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Spotlight: Optimizing Device 
Placement for Training 
Deep Neural Networks

(Gao et al. 2018) 
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The main idea

● They viewed the partition 
problem as a Markov Decision 
Process:

● That is, each operation (i.e. a 
vertex of the graph) is assigned 
to the working units 
sequentially, based on current 
state.
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Some preliminaries

● Reward function: 

● State-action value function:

●  Expected reward:

In classical policy ascent, the first representation of the objective is 
used, which gives the updates:
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Proximal Policy Optimization

● Rather than using policy gradient algorithms to update the 
parameters, they suggested a proximal policy optimization, which is 
uses the 2nd representation of the expected reward.:

● The latter constitutes a lower bound of the expected reward via:
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Proximal Policy Optimization

Rather than maximizing the expected reward, the lower bound is 
iteratively maximized. The lower bound is approximated as:
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The Spotlight algorithm

57



The Spotlight algorithm

Simulate actions from 
current policy
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The Spotlight algorithm

Estimate the training time 
of the current actions. If 
it’s better that previous 

iterates, then update the 
currently best action.

59



The Spotlight algorithm

Compute the objective 
function and maximize 

w.r.t the new policies.
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Model of the placement policy: RNN with 
LSTM-cells

Rather than feeding all operations into the net, they 
use a operation vocabulary to group them into 
larger ops. This ensures that related operations are 
co-located.
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Results
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Clever partitions that Spotlight finds
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Some thoughts

● Applying proximal policy optimization to the partitioning problem is 
both very innovative, and a seemly powerful technique.

● The derived properties are based the theoretical lower bound of the 
expected reward:

While in their implementation, the approximation is considered:

Beta is treated as a hyperparameter (set to 1). Are there tighter lower 
bounds to exploit?
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... yet another comment

● Their grouping strategy is both intuitive and simple, but might be 
suboptimal. Would have been interesting to see the effect of 
augmenting Spotlight with a model-based grouper (e.g. one similar 
to that of the Hierarchical model considered in this module).

65


