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» Train large deep learning models with huge amounts of training data.

» Parallelization and distribution are essential.




Popular Parallelization Methods
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[Dean et al., Large Scale Distributed Deep Networks, 2012]



Model Parallelization
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Model Parallelization

» The model is split across multiple devices.

» Depends on the architecture of the NN.
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Collocation Constraint

Device Constraint
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[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]




Partitioning Approaches
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Model Parallelization - Hash Partitioning

Randomly assign vertices to devices proportionally to the capacity of the devices by
using a hash function.
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[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]




Model Parallelization - Critical Path

» Assigning the complete critical path to the fastest device.

» Critical path: the path with the longest computation time from source to sink vertex.
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The TensorFlow Partitioning and Scheduling Problem, 2017]




Model Parallelization - Multi-Objective Heuristics

» Different objectives, e.g., memory, importance, traffic, and execution time
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ML for Model Parallelization



Device Placement using Reinforcement Learning (1/3)
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[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]




Device Placement using Reinforcement Learning (2/3)
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[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]




Device Placement using Reinforcement Learning (3/3)
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» Objective: arg miny J(w)
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» Objective: arg miny J(w)
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Device Placement using Reinforcement Learning (3/3)

>

I(w) = Epr(pig) [R(P)[9]
Objective: arg miny J(w)

v

» J(w): expected runtime

» w: parameters of the RL policy
» G: input neural graph

» R: runtime

» P: output placements

v

m(P|G,w): the RL policy (device placement policy)




Device Placement Policy




Solution 1

Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017
Mirhoseini et al., A Hierarchical Model for Device Placement, 2018
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System Overview

» The RL policy is defined as a attentional seq-to-seq model.
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[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]




System Overview

» The RL policy is defined as a attentional seq-to-seq model.

» RNN Encoder receives sequence of embedding for each operation.

somax
Attention

Hidden
state

opl op2 0p100 ’ ’

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]




System Overview

» The RL policy is defined as a attentional seq-to-seq model.
» RNN Encoder receives sequence of embedding for each operation.

» RNN Decoder predicts a device placement for each operation.

somax
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Hidden
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[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]




Operation Embedding

» The embedding of each operation is the concatenation of its type, its output shape,
and its one-hot encoded adjacency information.
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Operation Embedding

» The embedding of each operation is the concatenation of its type, its output shape,
and its one-hot encoded adjacency information.

» Type of the operations, e.g., MatMul or conv2d.

» The size of each operation’s list of output tensors (the output shape).
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Operation Embedding

» The embedding of each operation is the concatenation of its type, its output shape,
and its one-hot encoded adjacency information.

» Type of the operations, e.g., MatMul or conv2d.
» The size of each operation’s list of output tensors (the output shape).

» The one-hot encoding vector that represents the operations that are direct inputs
and outputs to each operation.

output

shapes 2

type




RNN Decoder

» The decoder is an attentional LSTM with a fixed number of time steps.
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[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]




RNN Decoder

» The decoder is an attentional LSTM with a fixed number of time steps.

» The number of the steps is equal to the number of operations in a graph G.

somax
Attention

Hidden
state

opl op2 0p100 ’ ’

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]




RNN Decoder

» The decoder is an attentional LSTM with a fixed number of time steps.
» The number of the steps is equal to the number of operations in a graph G.

» At each step, the decoder outputs the device for the operation.
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[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]
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Training with REINFORCE

> J(w) = Epr(pigm [R(P)|F]
> ViJ(W) = Epr(pig.u)[R(P).-Vilogp(P|G, w)]

» Estimate V,J(w) by drawing K placement samples using P ~ 7(.|G, w).
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Training with REINFORCE

> J(w) = Eprrn(pigw[R(P)|9]

v

VuI(W) = Epr(p|guw)[R(P)-Vilogp(P|G, w)]

v

Estimate V,J(w) by drawing K placement samples using P ~ 7(.|G, w).

v

Vid(w) =1 S LR(P; — B).Vulogy(P|G,w)]

v

Estimate B: a baseline term to reduce the variance of the policy gradient.
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Shortcomings of the Proposed Model

» Seg-to-seq models cannot be unrolled for more than few hundred steps.

» Most TensorFlow graphs contain tens of thousands of operations.

» Manual grouping of operations hampers scalability.




Device Placement Policy




An End-to-End Hierarchical Placement Model

» Grouping operations.

» Prediction is for group placement, not for a single operation.
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[Mirhoseini et al., A Hierarchical Model for Device Placement, 2018]
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Hierarchical Device Placement Optimization (1/2)

>

(g, Wa) = Ep(a,u, ) [Ral = 2gr, >am, P(&:Wg)P(dlg, Wg)Ra
Objective: arg miny J(w)

v

» G: input neural graph
» R: runtime
» J(wg,wa): expected runtime

> wg: parameters of the grouper

> w4: parameters of the placer




Hierarchical Device Placement Optimization (2/2)
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Hierarchical Device Placement Optimization (2/2)

> J(wg, wa) = Ep(au,ua)Ra] = Dgor, 2awr, P(8: Wg)P(d]g, we)Ra

» p(g,wg): the probability of a sample group assignment g drawn from the Grouper
softmax distribution 7.




Hierarchical Device Placement Optimization (2/2)

> J(wg, wa) = Ep(au,ua)Ra] = Dgor, 2awr, P(8: Wg)P(d]g, we)Ra

» p(g,wg): the probability of a sample group assignment g drawn from the Grouper
softmax distribution 7.

» p(d|g,wg): the probability of a sample device placement d drawn from the Placer
softmax distribution 7y.
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Training with REINFORCE

> J(Wgawd) = EP(d,wg,Wd)[Rd] = Zgwﬁg Zd~7rd P(gan)P(d|gan)Rd

v

Vg I (g, wa) = Zgwﬂg ViueP(8,Wg) D g, P(d]g, Wg)Ra

v

v (Wg’ Wd) Zdwwd Zgwwg p(ga Wg)Vde(d|ga Wg)Rd



A Few Words About Graph Embedding

The slides of this part were derived from Jure Leskovec's slides - Stanford University



Feature Learning in Graphs
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Why Learn Embedding?

> The goal is to map each node into a low-dimensional space.

" Latent Dimensions
¢ Anomaly Detection

e Aitribute Prediction
:> [:> Clustering
e Link Prediction
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> The goal is to map each node into a low-dimensional space.

* Representation for nodes.
 Similarity between nodes indicates link strength.
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Why Learn Embedding?

> The goal is to map each node into a low-dimensional space.
* Representation for nodes.
 Similarity between nodes indicates link strength.
e Encodes network information and generate node representation.

Latent Dimensions
e Anomaly Detection

e Aitribute Prediction
:> [:> Clustering
e Link Prediction

d << |v|

Adjacency Matrix




Example
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[Perozzi et al., DeepWalk: Online Learning of Social Representations, 2014]
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Idea: Convolutional Networks

» Goal is to generalize convolutions beyond simple lattices.

» Leverage node features/attributes (e.g., text, images).

© Fully




From Images to Networks

» Transform information at the neighbors and combine it:

e Transform messages h; from neighbors: w;h;
¢ Add them up: ). wih;

Image Graph
Single CNN layer with 3 x 3 filter




Real-World Graphs

» But what if your graphs look like this?




GraphSAGE (1/3)

» GraphSAGE aggregates neighbouring node embeddings for a given node.

7

=
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1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

[http://snap.stanford.edu/graphsage]




GraphSAGE (1/3)

» GraphSAGE aggregates neighbouring node embeddings for a given node.

» The output of one round of GraphSAGE: new node representation for every node in

the graph.
p
0@
Sl kfgﬂww“”
1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

[http://snap.stanford.edu/graphsage]




GraphSAGE (2/3)

Target o

D e "5:? N
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[https://mc.ai/ohmygraphs-graphsage-and-inductive-representation-learning-2]




GraphSAGE (3/3)

> h}\/(v) =max(fi(hi),Vu € N(v)) 0




GraphSAGE (3/3)

> h}\/(v) =max(fi(hi),Vu € N(v)) o -

> h‘1,+1 — f%*l(concat(hxl,,h/l\/(v))) N




GraphSAGE (3/3)

> h}\/(v) =max(fi(hi),Vu € N(v)) 0

> byt = £ (concat(hy, hiy,))

» h,: the hidden feature of v




GraphSAGE (3/3)

> h}\/(v) =max(fi(hi),Vu € N(v))
» hift! = f%“(concat(h‘l,,h/l\[(v))) o
» h,: the hidden feature of v

v

f, and fy,: dense layers




GraphSAGE (3/3)

> h}\/(v) =max(fi(hi),Vu € N(v))
» hift! = f%“(concat(h‘l,,h/l\[(v))) o
» h,: the hidden feature of v

v

f, and fy,: dense layers

N (v): the neighbors of v

v




GraphSAGE (3/3)

>

h}\/(v) =max(fi(hi),Vu € N(v)) e

v

hy ™t = £ (concat(hy, hjy )

» h,: the hidden feature of v
> f, and fy: dense layers
¢ b v fat 7 Ny 0
» N (v): the neighbors of v 4
> hy(y): the aggregated feature from the neighbors of v




GraphSAGE Shortcoming

» Nodes with the same neighborhoods have the similar embeddings, regardless of their

location in the graph?
Q QDL
A B _
.o o‘ -
O O

[You et al., Position-aware Graph Neural Networks, 2019]




[Figure by Milko Mitropolitsky]




Solution 2

Addanki, et al., Placeto: Learning Generalizable Device Placement Algorithms
for Distributed Machine Learning, 2019



Device Placement Policy




» Graph embedding

» Placement policy network

Placeto System Overview

State s, RL agent Next state s,
Device1 Policy
Graph "
1> neural > nzflv:;vrk _
Current network Device 2 Sample
node |~ . g ol
fu?eward r, = Runtime(s.4) - Runtime(s,)
Runtime(s,) A Runtime(s,,)

New

" placement

[Addanki, et al., Placeto: Learning Generalizable Device Placement Algorithms for Distributed Machine Learning, 2019]




MDP Formulation (1/2)

» Model the device placement as Markov Decision Process (MDP).

> Initial state s, consists of G with an arbitrary device placement for each node group

Placement improvement MDP steps

Final placement
Action a;: Action az: Action ag: Action a4:
Device 2 Device 1 Device 2 Device 2
> > > > .. =
Step t=0 Step t=1

[Addanki, et al., Placeto:

Step t=2 Step t=3

End of episode
Learning Generalizable Device Placement Algorithms for Distributed Machine Learning, 2019]




MDP Formulation (1/2)

» Model the device placement as Markov Decision Process (MDP).

> Initial state s, consists of G with an arbitrary device placement for each node group.

» Action in step t outputs a new placement for the tth node in G based on s¢_;.

Placement improvement MDP steps Final placement

I
Action a;:

Action az: Action ag: Action a4:
Device 2 Device 1 Device 2 Device 2
> > > P ... ==

Step t=0 Step t=1 Step t=2 Step t=3
[Addanki, et al., Placeto:

End of episode

Learning Generalizable Device Placement Algorithms for Distributed Machine Learning, 2019]




MDP Formulation (1/2)

>

Model the device placement as Markov Decision Process (MDP).

v

Initial state s, consists of G with an arbitrary device placement for each node group.

v

Action in step t outputs a new placement for the tth node in G based on s¢_;.

v

Episode ends in |V| steps (V: set of nodes in G).

Placement improvement MDP steps Final placement
Action a;: Action az: Action ag: Action a4:
Device 2 Device 1 Device 2 Device 2
> > e
Step t=0 Step t=1 Step t=2 Step t=3 End of episode

[Addanki, et al., Placeto: Learning Generalizable Device Placement Algorithms for Distributed Machine Learning, 2019]




MDP Formulation (2/2)

» Two approaches for assigning rewards.
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MDP Formulation (2/2)

» Two approaches for assigning rewards.

» Approach 1: assign O reward at each intermediate RL step and the negative run time
of the final replacement as final reward.

» Approach 2: assign intermediate rewards ry = R(Ps,,,) — R(Ps,)




Graph Embedding

» Computing per-group attributes (a)

(a) Top-down (b)
message
passin
Op group feature
(total_runtime,
output_tensor_size,
current_placement,
is_node_current,
is_node_done) Bottom-up
message
passing

[Addanki, et al., Placeto: Learning Generalizable Device Placement Algorithms for Distributed Machine Learning, 2019]




Graph Embedding

» Computing per-group attributes (a)

» Local neighborhood summarization (b)

(a) Top-down (b) Parent o (€)  Parent TR (d)
m:ss_age gm‘:’:]; ) groups \‘O + O
passin, ’ ~,

Op group feature
(total_runtime,
output_tensor_size,
current_placement,
is_node_current,

is_node_done) Bottom-up
message
passing Cl .
groups

[Addanki, et al., Placeto:

Learning Generalizable Device Placement Algorithms for Distributed Machine Learning, 2019]




Graph Embedding

» Computing per-group attributes (a)
» Local neighborhood summarization (b)

» Pooling summaries (c)

Parent - e
(@) Top-down (b) s/ (€  paremy
message groups
passin,
Op group feature Child
(total_runtime,
output_tensor_size, parallel 97OUPS
current_placement,
is_node_current, groups paraliel
is_node_done) Bottomup A
message S —
passing Child, Current

groups ™. node

[Addanki, et al., Placeto: Learning Generalizable Device Placement Algorithms for Distributed Machine Learning, 2019]




Placement Policy Network

» Implements the MDP policy using a three-layer fully connected neural network.

» Trains it using the REINFORCE policy-gradient algorithm.

State s, RL agent Next state s,
Device1 Policy
Graph "
1> neural > nzflv:;vrk _
Current network Device 2 Sample
node |” o v | New
placement

fu?eward r, = Runtime(s.4) - Runtime(s,)
> - )«

Runtime(s,) Runtime(s,;)

[Addanki, et al., Placeto: Learning Generalizable Device Placement Algorithms for Distributed Machine Learning, 2019]




Graph Representation Matters in Device Placement (1/2)

Graph
or PGVl o P-GNN
\ \

;7 7

\ \ / /
State §, \ s RLagent Next state s,

\ / )
\ V4 Device 1 Rolicy
EE—
Qi ’ Policy
| neural > et ;
Current N | network 7 Device 2 Sample |
node |” \ S = 2 | New
placement

Reward r; = Runtime(s,.,) - Runtime(s,)

o e
noe

Runtime(s,) Runtime(s,.)

r g

N

[Mitropolitsky et al., Graph Representation Matters in Device Placement, 2020]




Graph Representation Matters in Device Placement (2/2)

B Placeto [l GraphSAGE P-GNN
40%
34.32%
31.20%)

30.50%
29.06%

30% o

20%
14.59%

10% -

Average runtime improvement per dataset (%)

0%

cifar10 nmt

Datasets

[Mitropolitsky et al., Graph Representation Matters in Device Placement, 2020]




Solution 3

Zhou et al., A Single-Shot Generalized Device Placement for
Large Dataflow Graphs, 2020



Device Placement Policy




3 Adjacency Matrix
Sparse
Representation

Concatenated
Nodes Features ;

—

GraphSAGE

Nxh

Node Feature:
Ops Type

Q Qutput Shape

Input Ops
—— Aggregator 1 ‘
; — Aggregator 2 | Node Embeddings ;

" Transformer-XL-based

Placer Network

Segment1 Segment 2

N: number of nodes, h: hidden Size, d: number of devices

Nxd

Policy Output

-+ Device Placement

Probabilities

[Zhou et al., GDP: Generalized Device Placement for Dataflow Graphs, 2019]




GDP System Overview

» Uses a deep RL approach with graph embeddings and a Transformer.

» Generalize to unseen graphs.

3 Adjacency Matrix
Sparse
Representation

Concatenated
Nodes Features ;

—

GraphSAGE

Nxh

Node Feature:
Ops Type

Q Qutput Shape

Input Ops
—— Aggregator 1 ‘
; — Aggregator 2 | Node Embeddings ;

" Transformer-XL-based

Placer Network

Segment1 Segment 2

N: number of nodes, h: hidden Size, d: number of devices

Nxd

Policy Output

-+ Device Placement

Probabilities

[Zhou et al., GDP: Generalized Device Placement for Dataflow Graphs, 2019]




GDP System Overview

» Uses a deep RL approach with graph embeddings and a Transformer.
» Generalize to unseen graphs.
>

Generates placement for the whole graph in one step, reducing training time.

L Nxd
/ Transformer-XL-based
GraphSAGE ; ! Placer Network :

! Nxh .

Sparse | B :

h 1 : ! Segment1 Segment2 !
-Representamn : Node Feature:  |: P 9 nose g 200,
Ops Type ( ¢ ) | 3
Q Qutput Shape r ] > 8

; Input Ops : : Mg USy
| ' : ! S
' Concatenated ‘ ] =
Concatenated . Aggregator 1 s

Nodes Features

! , __. Aggregator 2 | Node Embeddings |

-+ Device Placement
Probabilities
N: number of nodes, h: hidden Size, d: number of devices

[Zhou et al., GDP: Generalized Device Placement for Dataflow Graphs, 2019]




Placement Policy Network (1/2)
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Placement Policy Network (1/2)

Conventional seg-to-seq models usually target short sequences, which requires group-
ing beforehand.

LSTM used in previous works is slower and more difficult to train than attention-based
models.

GDP adopts segment-level recurrence introduced in Transformer-XL to capture long-
term dependencies.

The key is to cache (with gradient flows disabled) and reuse the hidden states of
previous segments.
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Figure 1: Ilustration of the vanilla model with a segment length 4.
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(a) Training phase. (b) Evaluation phase.
Figure 2: Mlustration of the Transformer-XL model with a segment length 4.

[Z. Dai et al., Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context, 2019]
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» Prior works focus on a single graph only.

» In GDP, the RL objective is defined to simultaneously reduce the expected runtime
of the placements over a set of N dataflow graphs.

> J(w) = Egg prr(plow) R(P)IG] = § 3¢ Epr(plow)[R(P)[G]
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Model parallelization and device placement
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Questions?



