
Distributed Learning - Model Parallelization

Amir H. Payberah
payberah@kth.se

2020-10-26

The Course Web Page

https://fid3024.github.io

1 / 58

I Train large deep learning models with huge amounts of training data.

I Parallelization and distribution are essential.

2 / 58

Popular Parallelization Methods

[Dean et al., Large Scale Distributed Deep Networks, 2012]

3 / 58

Model Parallelization

4 / 58

Model Parallelization

I The model is split across multiple devices.

I Depends on the architecture of the NN.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

5 / 58

Model Parallelization

I The model is split across multiple devices.

I Depends on the architecture of the NN.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

5 / 58

NP-Completeness

[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]

6 / 58

Partitioning Approaches

[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]

7 / 58

Model Parallelization - Hash Partitioning

I Randomly assign vertices to devices proportionally to the capacity of the devices by
using a hash function.

[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]

8 / 58

Model Parallelization - Critical Path

I Assigning the complete critical path to the fastest device.

I Critical path: the path with the longest computation time from source to sink vertex.

[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]

9 / 58

Model Parallelization - Multi-Objective Heuristics

I Different objectives, e.g., memory, importance, traffic, and execution time

[Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017]

10 / 58

ML for Model Parallelization

11 / 58

Device Placement using Reinforcement Learning (1/3)

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

12 / 58

Device Placement using Reinforcement Learning (2/3)

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

13 / 58

Device Placement using Reinforcement Learning (3/3)

I J(w) = EP∼π(P|G,w)[R(P)|G]

I Objective: arg minw J(w)

I J(w): expected runtime

I w: parameters of the RL policy

I G: input neural graph

I R: runtime

I P: output placements

I π(P|G, w): the RL policy (device placement policy)

14 / 58

Device Placement using Reinforcement Learning (3/3)

I J(w) = EP∼π(P|G,w)[R(P)|G]

I Objective: arg minw J(w)

I J(w): expected runtime

I w: parameters of the RL policy

I G: input neural graph

I R: runtime

I P: output placements

I π(P|G, w): the RL policy (device placement policy)

14 / 58

Device Placement using Reinforcement Learning (3/3)

I J(w) = EP∼π(P|G,w)[R(P)|G]

I Objective: arg minw J(w)

I J(w): expected runtime

I w: parameters of the RL policy

I G: input neural graph

I R: runtime

I P: output placements

I π(P|G, w): the RL policy (device placement policy)

14 / 58

Device Placement using Reinforcement Learning (3/3)

I J(w) = EP∼π(P|G,w)[R(P)|G]

I Objective: arg minw J(w)

I J(w): expected runtime

I w: parameters of the RL policy

I G: input neural graph

I R: runtime

I P: output placements

I π(P|G, w): the RL policy (device placement policy)

14 / 58

Device Placement using Reinforcement Learning (3/3)

I J(w) = EP∼π(P|G,w)[R(P)|G]

I Objective: arg minw J(w)

I J(w): expected runtime

I w: parameters of the RL policy

I G: input neural graph

I R: runtime

I P: output placements

I π(P|G, w): the RL policy (device placement policy)

14 / 58

Device Placement using Reinforcement Learning (3/3)

I J(w) = EP∼π(P|G,w)[R(P)|G]

I Objective: arg minw J(w)

I J(w): expected runtime

I w: parameters of the RL policy

I G: input neural graph

I R: runtime

I P: output placements

I π(P|G, w): the RL policy (device placement policy)

14 / 58

Device Placement using Reinforcement Learning (3/3)

I J(w) = EP∼π(P|G,w)[R(P)|G]

I Objective: arg minw J(w)

I J(w): expected runtime

I w: parameters of the RL policy

I G: input neural graph

I R: runtime

I P: output placements

I π(P|G, w): the RL policy (device placement policy)

14 / 58

Device Placement Policy

15 / 58

Solution 1

Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017
Mirhoseini et al., A Hierarchical Model for Device Placement, 2018

16 / 58

Device Placement Policy

17 / 58

Device Placement Policy

17 / 58

System Overview

I The RL policy is defined as a attentional seq-to-seq model.

I RNN Encoder receives sequence of embedding for each operation.

I RNN Decoder predicts a device placement for each operation.

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

18 / 58

System Overview

I The RL policy is defined as a attentional seq-to-seq model.

I RNN Encoder receives sequence of embedding for each operation.

I RNN Decoder predicts a device placement for each operation.

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

18 / 58

System Overview

I The RL policy is defined as a attentional seq-to-seq model.

I RNN Encoder receives sequence of embedding for each operation.

I RNN Decoder predicts a device placement for each operation.

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

18 / 58

Operation Embedding

I The embedding of each operation is the concatenation of its type, its output shape,
and its one-hot encoded adjacency information.

I Type of the operations, e.g., MatMul or conv2d.

I The size of each operation’s list of output tensors (the output shape).

I The one-hot encoding vector that represents the operations that are direct inputs
and outputs to each operation.

19 / 58

Operation Embedding

I The embedding of each operation is the concatenation of its type, its output shape,
and its one-hot encoded adjacency information.

I Type of the operations, e.g., MatMul or conv2d.

I The size of each operation’s list of output tensors (the output shape).

I The one-hot encoding vector that represents the operations that are direct inputs
and outputs to each operation.

19 / 58

Operation Embedding

I The embedding of each operation is the concatenation of its type, its output shape,
and its one-hot encoded adjacency information.

I Type of the operations, e.g., MatMul or conv2d.

I The size of each operation’s list of output tensors (the output shape).

I The one-hot encoding vector that represents the operations that are direct inputs
and outputs to each operation.

19 / 58

Operation Embedding

I The embedding of each operation is the concatenation of its type, its output shape,
and its one-hot encoded adjacency information.

I Type of the operations, e.g., MatMul or conv2d.

I The size of each operation’s list of output tensors (the output shape).

I The one-hot encoding vector that represents the operations that are direct inputs
and outputs to each operation.

19 / 58

RNN Decoder

I The decoder is an attentional LSTM with a fixed number of time steps.

I The number of the steps is equal to the number of operations in a graph G.

I At each step, the decoder outputs the device for the operation.

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

20 / 58

RNN Decoder

I The decoder is an attentional LSTM with a fixed number of time steps.

I The number of the steps is equal to the number of operations in a graph G.

I At each step, the decoder outputs the device for the operation.

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

20 / 58

RNN Decoder

I The decoder is an attentional LSTM with a fixed number of time steps.

I The number of the steps is equal to the number of operations in a graph G.

I At each step, the decoder outputs the device for the operation.

[Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017]

20 / 58

Training with REINFORCE

I J(w) = EP∼π(P|G,w)[R(P)|G]

I ∇wJ(w) = EP∼π(P|G,w)[R(P).∇wlogp(P|G, w)]

I Estimate ∇wJ(w) by drawing K placement samples using P ∼ π(.|G,w).

I ∇wJ(w) = 1
K

∑K
i=1[R(Pi − B).∇wlogp(P|G, w)]

I Estimate B: a baseline term to reduce the variance of the policy gradient.

21 / 58

Training with REINFORCE

I J(w) = EP∼π(P|G,w)[R(P)|G]

I ∇wJ(w) = EP∼π(P|G,w)[R(P).∇wlogp(P|G, w)]

I Estimate ∇wJ(w) by drawing K placement samples using P ∼ π(.|G,w).

I ∇wJ(w) = 1
K

∑K
i=1[R(Pi − B).∇wlogp(P|G, w)]

I Estimate B: a baseline term to reduce the variance of the policy gradient.

21 / 58

Training with REINFORCE

I J(w) = EP∼π(P|G,w)[R(P)|G]

I ∇wJ(w) = EP∼π(P|G,w)[R(P).∇wlogp(P|G, w)]

I Estimate ∇wJ(w) by drawing K placement samples using P ∼ π(.|G,w).

I ∇wJ(w) = 1
K

∑K
i=1[R(Pi − B).∇wlogp(P|G, w)]

I Estimate B: a baseline term to reduce the variance of the policy gradient.

21 / 58

Training with REINFORCE

I J(w) = EP∼π(P|G,w)[R(P)|G]

I ∇wJ(w) = EP∼π(P|G,w)[R(P).∇wlogp(P|G, w)]

I Estimate ∇wJ(w) by drawing K placement samples using P ∼ π(.|G,w).

I ∇wJ(w) = 1
K

∑K
i=1[R(Pi − B).∇wlogp(P|G, w)]

I Estimate B: a baseline term to reduce the variance of the policy gradient.

21 / 58

Training with REINFORCE

I J(w) = EP∼π(P|G,w)[R(P)|G]

I ∇wJ(w) = EP∼π(P|G,w)[R(P).∇wlogp(P|G, w)]

I Estimate ∇wJ(w) by drawing K placement samples using P ∼ π(.|G,w).

I ∇wJ(w) = 1
K

∑K
i=1[R(Pi − B).∇wlogp(P|G, w)]

I Estimate B: a baseline term to reduce the variance of the policy gradient.

21 / 58

Shortcomings of the Proposed Model

I Seq-to-seq models cannot be unrolled for more than few hundred steps.

I Most TensorFlow graphs contain tens of thousands of operations.

I Manual grouping of operations hampers scalability.

22 / 58

Shortcomings of the Proposed Model

I Seq-to-seq models cannot be unrolled for more than few hundred steps.

I Most TensorFlow graphs contain tens of thousands of operations.

I Manual grouping of operations hampers scalability.

22 / 58

Shortcomings of the Proposed Model

I Seq-to-seq models cannot be unrolled for more than few hundred steps.

I Most TensorFlow graphs contain tens of thousands of operations.

I Manual grouping of operations hampers scalability.

22 / 58

Device Placement Policy

23 / 58

An End-to-End Hierarchical Placement Model

I Grouping operations.

I Prediction is for group placement, not for a single operation.

[Mirhoseini et al., A Hierarchical Model for Device Placement, 2018]

24 / 58

Hierarchical Device Placement Optimization (1/2)

I J(wg, wd) = EP(d,wg,wd)[Rd] =
∑

g∼πg
∑

d∼πd p(g, wg)p(d|g, wg)Rd

I Objective: arg minw J(w)

I G: input neural graph

I R: runtime

I J(wg, wd): expected runtime

I wg: parameters of the grouper

I wd: parameters of the placer

25 / 58

Hierarchical Device Placement Optimization (1/2)

I J(wg, wd) = EP(d,wg,wd)[Rd] =
∑

g∼πg
∑

d∼πd p(g, wg)p(d|g, wg)Rd

I Objective: arg minw J(w)

I G: input neural graph

I R: runtime

I J(wg, wd): expected runtime

I wg: parameters of the grouper

I wd: parameters of the placer

25 / 58

Hierarchical Device Placement Optimization (1/2)

I J(wg, wd) = EP(d,wg,wd)[Rd] =
∑

g∼πg
∑

d∼πd p(g, wg)p(d|g, wg)Rd

I Objective: arg minw J(w)

I G: input neural graph

I R: runtime

I J(wg, wd): expected runtime

I wg: parameters of the grouper

I wd: parameters of the placer

25 / 58

Hierarchical Device Placement Optimization (1/2)

I J(wg, wd) = EP(d,wg,wd)[Rd] =
∑

g∼πg
∑

d∼πd p(g, wg)p(d|g, wg)Rd

I Objective: arg minw J(w)

I G: input neural graph

I R: runtime

I J(wg, wd): expected runtime

I wg: parameters of the grouper

I wd: parameters of the placer

25 / 58

Hierarchical Device Placement Optimization (1/2)

I J(wg, wd) = EP(d,wg,wd)[Rd] =
∑

g∼πg
∑

d∼πd p(g, wg)p(d|g, wg)Rd

I Objective: arg minw J(w)

I G: input neural graph

I R: runtime

I J(wg, wd): expected runtime

I wg: parameters of the grouper

I wd: parameters of the placer

25 / 58

Hierarchical Device Placement Optimization (1/2)

I J(wg, wd) = EP(d,wg,wd)[Rd] =
∑

g∼πg
∑

d∼πd p(g, wg)p(d|g, wg)Rd

I Objective: arg minw J(w)

I G: input neural graph

I R: runtime

I J(wg, wd): expected runtime

I wg: parameters of the grouper

I wd: parameters of the placer

25 / 58

Hierarchical Device Placement Optimization (2/2)

I J(wg, wd) = EP(d,wg,wd)[Rd] =
∑

g∼πg
∑

d∼πd p(g, wg)p(d|g, wg)Rd

I p(g, wg): the probability of a sample group assignment g drawn from the Grouper
softmax distribution πg.

I p(d|g, wg): the probability of a sample device placement d drawn from the Placer
softmax distribution πd.

26 / 58

Hierarchical Device Placement Optimization (2/2)

I J(wg, wd) = EP(d,wg,wd)[Rd] =
∑

g∼πg
∑

d∼πd p(g, wg)p(d|g, wg)Rd

I p(g, wg): the probability of a sample group assignment g drawn from the Grouper
softmax distribution πg.

I p(d|g, wg): the probability of a sample device placement d drawn from the Placer
softmax distribution πd.

26 / 58

Hierarchical Device Placement Optimization (2/2)

I J(wg, wd) = EP(d,wg,wd)[Rd] =
∑

g∼πg
∑

d∼πd p(g, wg)p(d|g, wg)Rd

I p(g, wg): the probability of a sample group assignment g drawn from the Grouper
softmax distribution πg.

I p(d|g, wg): the probability of a sample device placement d drawn from the Placer
softmax distribution πd.

26 / 58

Training with REINFORCE

I J(wg, wd) = EP(d,wg,wd)[Rd] =
∑

g∼πg
∑

d∼πd p(g, wg)p(d|g, wg)Rd

I ∇wgJ(wg, wd) =
∑

g∼πg ∇wgp(g, wg)
∑

d∼πd p(d|g, wg)Rd

I ∇wdJ(wg, wd) =
∑

d∼πd
∑

g∼πg p(g, wg)∇wdp(d|g, wg)Rd

27 / 58

Training with REINFORCE

I J(wg, wd) = EP(d,wg,wd)[Rd] =
∑

g∼πg
∑

d∼πd p(g, wg)p(d|g, wg)Rd

I ∇wgJ(wg, wd) =
∑

g∼πg ∇wgp(g, wg)
∑

d∼πd p(d|g, wg)Rd

I ∇wdJ(wg, wd) =
∑

d∼πd
∑

g∼πg p(g, wg)∇wdp(d|g, wg)Rd

27 / 58

Training with REINFORCE

I J(wg, wd) = EP(d,wg,wd)[Rd] =
∑

g∼πg
∑

d∼πd p(g, wg)p(d|g, wg)Rd

I ∇wgJ(wg, wd) =
∑

g∼πg ∇wgp(g, wg)
∑

d∼πd p(d|g, wg)Rd

I ∇wdJ(wg, wd) =
∑

d∼πd
∑

g∼πg p(g, wg)∇wdp(d|g, wg)Rd

27 / 58

A Few Words About Graph Embedding

The slides of this part were derived from Jure Leskovec’s slides - Stanford University

28 / 58

Feature Learning in Graphs

29 / 58

Why Learn Embedding?

I The goal is to map each node into a low-dimensional space.

• Representation for nodes.
• Similarity between nodes indicates link strength.
• Encodes network information and generate node representation.

30 / 58

Why Learn Embedding?

I The goal is to map each node into a low-dimensional space.
• Representation for nodes.

• Similarity between nodes indicates link strength.
• Encodes network information and generate node representation.

30 / 58

Why Learn Embedding?

I The goal is to map each node into a low-dimensional space.
• Representation for nodes.
• Similarity between nodes indicates link strength.

• Encodes network information and generate node representation.

30 / 58

Why Learn Embedding?

I The goal is to map each node into a low-dimensional space.
• Representation for nodes.
• Similarity between nodes indicates link strength.
• Encodes network information and generate node representation.

30 / 58

Example

[Perozzi et al., DeepWalk: Online Learning of Social Representations, 2014]

31 / 58

Idea: Convolutional Networks

I Goal is to generalize convolutions beyond simple lattices.

I Leverage node features/attributes (e.g., text, images).

32 / 58

From Images to Networks

I Transform information at the neighbors and combine it:
• Transform messages hi from neighbors: wihi
• Add them up:

∑
i wihi

Single CNN layer with 3× 3 filter

33 / 58

Real-World Graphs

I But what if your graphs look like this?

34 / 58

GraphSAGE (1/3)

I GraphSAGE aggregates neighbouring node embeddings for a given node.

I The output of one round of GraphSAGE: new node representation for every node in
the graph.

[http://snap.stanford.edu/graphsage]

35 / 58

GraphSAGE (1/3)

I GraphSAGE aggregates neighbouring node embeddings for a given node.

I The output of one round of GraphSAGE: new node representation for every node in
the graph.

[http://snap.stanford.edu/graphsage]

35 / 58

GraphSAGE (2/3)

[https://mc.ai/ohmygraphs-graphsage-and-inductive-representation-learning-2]

36 / 58

GraphSAGE (3/3)

I hlN (v) = max(fia(hlu),∀u ∈ N (v))

I hl+1
v = fl+1

b (concat(hlv, h
l
N (v)))

I hv: the hidden feature of v

I fa and fb: dense layers

I N (v): the neighbors of v

I hN (v): the aggregated feature from the neighbors of v

37 / 58

GraphSAGE (3/3)

I hlN (v) = max(fia(hlu),∀u ∈ N (v))

I hl+1
v = fl+1

b (concat(hlv, h
l
N (v)))

I hv: the hidden feature of v

I fa and fb: dense layers

I N (v): the neighbors of v

I hN (v): the aggregated feature from the neighbors of v

37 / 58

GraphSAGE (3/3)

I hlN (v) = max(fia(hlu),∀u ∈ N (v))

I hl+1
v = fl+1

b (concat(hlv, h
l
N (v)))

I hv: the hidden feature of v

I fa and fb: dense layers

I N (v): the neighbors of v

I hN (v): the aggregated feature from the neighbors of v

37 / 58

GraphSAGE (3/3)

I hlN (v) = max(fia(hlu),∀u ∈ N (v))

I hl+1
v = fl+1

b (concat(hlv, h
l
N (v)))

I hv: the hidden feature of v

I fa and fb: dense layers

I N (v): the neighbors of v

I hN (v): the aggregated feature from the neighbors of v

37 / 58

GraphSAGE (3/3)

I hlN (v) = max(fia(hlu),∀u ∈ N (v))

I hl+1
v = fl+1

b (concat(hlv, h
l
N (v)))

I hv: the hidden feature of v

I fa and fb: dense layers

I N (v): the neighbors of v

I hN (v): the aggregated feature from the neighbors of v

37 / 58

GraphSAGE (3/3)

I hlN (v) = max(fia(hlu),∀u ∈ N (v))

I hl+1
v = fl+1

b (concat(hlv, h
l
N (v)))

I hv: the hidden feature of v

I fa and fb: dense layers

I N (v): the neighbors of v

I hN (v): the aggregated feature from the neighbors of v

37 / 58

GraphSAGE Shortcoming

I Nodes with the same neighborhoods have the similar embeddings, regardless of their
location in the graph?

[You et al., Position-aware Graph Neural Networks, 2019]

38 / 58

Position-aware Graph Neural Networks

I By adding anchor sets - we bypass that problem.

[Figure by Milko Mitropolitsky]

39 / 58

Solution 2

Addanki, et al., Placeto: Learning Generalizable Device Placement Algorithms
for Distributed Machine Learning, 2019

40 / 58

Device Placement Policy

41 / 58

Placeto System Overview

I Graph embedding

I Placement policy network

[Addanki, et al., Placeto: Learning Generalizable Device Placement Algorithms for Distributed Machine Learning, 2019]

42 / 58

MDP Formulation (1/2)

I Model the device placement as Markov Decision Process (MDP).

I Initial state s0, consists of G with an arbitrary device placement for each node group.

I Action in step t outputs a new placement for the tth node in G based on st−1.

I Episode ends in |V| steps (V: set of nodes in G).

[Addanki, et al., Placeto: Learning Generalizable Device Placement Algorithms for Distributed Machine Learning, 2019]

43 / 58

MDP Formulation (1/2)

I Model the device placement as Markov Decision Process (MDP).

I Initial state s0, consists of G with an arbitrary device placement for each node group.

I Action in step t outputs a new placement for the tth node in G based on st−1.

I Episode ends in |V| steps (V: set of nodes in G).

[Addanki, et al., Placeto: Learning Generalizable Device Placement Algorithms for Distributed Machine Learning, 2019]

43 / 58

MDP Formulation (1/2)

I Model the device placement as Markov Decision Process (MDP).

I Initial state s0, consists of G with an arbitrary device placement for each node group.

I Action in step t outputs a new placement for the tth node in G based on st−1.

I Episode ends in |V| steps (V: set of nodes in G).

[Addanki, et al., Placeto: Learning Generalizable Device Placement Algorithms for Distributed Machine Learning, 2019]

43 / 58

MDP Formulation (2/2)

I Two approaches for assigning rewards.

I Approach 1: assign 0 reward at each intermediate RL step and the negative run time
of the final replacement as final reward.

I Approach 2: assign intermediate rewards rt = R(Pst+1)− R(Pst)

44 / 58

MDP Formulation (2/2)

I Two approaches for assigning rewards.

I Approach 1: assign 0 reward at each intermediate RL step and the negative run time
of the final replacement as final reward.

I Approach 2: assign intermediate rewards rt = R(Pst+1)− R(Pst)

44 / 58

MDP Formulation (2/2)

I Two approaches for assigning rewards.

I Approach 1: assign 0 reward at each intermediate RL step and the negative run time
of the final replacement as final reward.

I Approach 2: assign intermediate rewards rt = R(Pst+1)− R(Pst)

44 / 58

Graph Embedding

I Computing per-group attributes (a)

I Local neighborhood summarization (b)

I Pooling summaries (c)

[Addanki, et al., Placeto: Learning Generalizable Device Placement Algorithms for Distributed Machine Learning, 2019]

45 / 58

Graph Embedding

I Computing per-group attributes (a)

I Local neighborhood summarization (b)

I Pooling summaries (c)

[Addanki, et al., Placeto: Learning Generalizable Device Placement Algorithms for Distributed Machine Learning, 2019]

45 / 58

Graph Embedding

I Computing per-group attributes (a)

I Local neighborhood summarization (b)

I Pooling summaries (c)

[Addanki, et al., Placeto: Learning Generalizable Device Placement Algorithms for Distributed Machine Learning, 2019]

45 / 58

Placement Policy Network

I Implements the MDP policy using a three-layer fully connected neural network.

I Trains it using the REINFORCE policy-gradient algorithm.

[Addanki, et al., Placeto: Learning Generalizable Device Placement Algorithms for Distributed Machine Learning, 2019]

46 / 58

Graph Representation Matters in Device Placement (1/2)

[Mitropolitsky et al., Graph Representation Matters in Device Placement, 2020]

47 / 58

Graph Representation Matters in Device Placement (2/2)

[Mitropolitsky et al., Graph Representation Matters in Device Placement, 2020]

48 / 58

Solution 3

Zhou et al., A Single-Shot Generalized Device Placement for
Large Dataflow Graphs, 2020

49 / 58

Device Placement Policy

50 / 58

GDP System Overview

I Uses a deep RL approach with graph embeddings and a Transformer.

I Generalize to unseen graphs.

I Generates placement for the whole graph in one step, reducing training time.

N: number of nodes, h: hidden Size, d: number of devices

[Zhou et al., GDP: Generalized Device Placement for Dataflow Graphs, 2019]

51 / 58

GDP System Overview

I Uses a deep RL approach with graph embeddings and a Transformer.

I Generalize to unseen graphs.

I Generates placement for the whole graph in one step, reducing training time.

N: number of nodes, h: hidden Size, d: number of devices

[Zhou et al., GDP: Generalized Device Placement for Dataflow Graphs, 2019]

51 / 58

GDP System Overview

I Uses a deep RL approach with graph embeddings and a Transformer.

I Generalize to unseen graphs.

I Generates placement for the whole graph in one step, reducing training time.

N: number of nodes, h: hidden Size, d: number of devices

[Zhou et al., GDP: Generalized Device Placement for Dataflow Graphs, 2019]

51 / 58

Placement Policy Network (1/2)

I Conventional seq-to-seq models usually target short sequences, which requires group-
ing beforehand.

I LSTM used in previous works is slower and more difficult to train than attention-based
models.

I GDP adopts segment-level recurrence introduced in Transformer-XL to capture long-
term dependencies.

I The key is to cache (with gradient flows disabled) and reuse the hidden states of
previous segments.

52 / 58

Placement Policy Network (1/2)

I Conventional seq-to-seq models usually target short sequences, which requires group-
ing beforehand.

I LSTM used in previous works is slower and more difficult to train than attention-based
models.

I GDP adopts segment-level recurrence introduced in Transformer-XL to capture long-
term dependencies.

I The key is to cache (with gradient flows disabled) and reuse the hidden states of
previous segments.

52 / 58

Placement Policy Network (1/2)

I Conventional seq-to-seq models usually target short sequences, which requires group-
ing beforehand.

I LSTM used in previous works is slower and more difficult to train than attention-based
models.

I GDP adopts segment-level recurrence introduced in Transformer-XL to capture long-
term dependencies.

I The key is to cache (with gradient flows disabled) and reuse the hidden states of
previous segments.

52 / 58

Placement Policy Network (1/2)

I Conventional seq-to-seq models usually target short sequences, which requires group-
ing beforehand.

I LSTM used in previous works is slower and more difficult to train than attention-based
models.

I GDP adopts segment-level recurrence introduced in Transformer-XL to capture long-
term dependencies.

I The key is to cache (with gradient flows disabled) and reuse the hidden states of
previous segments.

52 / 58

Placement Policy Network (2/2)

[Z. Dai et al., Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context, 2019]

53 / 58

Placement Policy Network (2/2)

[Z. Dai et al., Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context, 2019]

53 / 58

Batch Training

I Prior works focus on a single graph only.

I In GDP, the RL objective is defined to simultaneously reduce the expected runtime
of the placements over a set of N dataflow graphs.

I J(w) = EG∼G,P∼π(P|G,w)[R(P)|G] = 1
N

∑
G EP∼π(P|G,w)[R(P)|G]

54 / 58

Batch Training

I Prior works focus on a single graph only.

I In GDP, the RL objective is defined to simultaneously reduce the expected runtime
of the placements over a set of N dataflow graphs.

I J(w) = EG∼G,P∼π(P|G,w)[R(P)|G] = 1
N

∑
G EP∼π(P|G,w)[R(P)|G]

54 / 58

Batch Training

I Prior works focus on a single graph only.

I In GDP, the RL objective is defined to simultaneously reduce the expected runtime
of the placements over a set of N dataflow graphs.

I J(w) = EG∼G,P∼π(P|G,w)[R(P)|G] = 1
N

∑
G EP∼π(P|G,w)[R(P)|G]

54 / 58

Summary

55 / 58

Summary

I Model parallelization and device placement

I Hierarchical device placement

I Placeto

I GDP

56 / 58

Reference

I Mayer, R. et al., The TensorFlow Partitioning and Scheduling Problem, 2017

I Mirhoseini et al., Device Placement Optimization with Reinforcement Learning, 2017

I Mirhoseini et al., A Hierarchical Model for Device Placement, 2018

I Addanki, et al., Placeto: Learning Generalizable Device Placement Algorithms for
Distributed Machine Learning, 2019

I Zhou et al., GDP: Generalized Device Placement for Dataflow Graphs, 2019

57 / 58

Questions?

58 / 58

