
Data Parallelism
FID3024 Systems for Scalable Machine Learning

Sina Sheikholeslami, Dominik Fay, Federico Baldassarre, Matteo Gamba
19 October 2020

Communication-Efficient Distributed Deep Learning
A Comprehensive Survey

Zhenheng Tang, Shaohuai Shi, Xiaowen Chu, Wei Wang, Bo Li
2020

https://arxiv.org/abs/2003.06307

Data Parallelism

3

(Tang et al., 2020)

https://arxiv.org/abs/2003.06307

Four Dimensions of Data Parallelism
● When?: Communication Synchronization and Frequency

○ Synchronous, Stale-Synchronous, Asynchronous, Local SGD

● Who?: Aggregation Algorithm (System Architecture)
○ Parameter Server, All-Reduce, Gossip

● What?: Communication Compression
○ Quantization, Coding, Sparsification

● How?: Parallelism / Scheduling of Computations and Communications
○ Pipelining, Scheduling

4

WHEN: Communication Synchronization & Frequency

5(Tang et al., 2020)

https://arxiv.org/abs/2003.06307

WHO: Aggregation Algorithm & System Architecture

6(Tang et al., 2020)

https://arxiv.org/abs/2003.06307

WHAT: Communication Compression

7(Tang et al., 2020)

https://arxiv.org/abs/2003.06307

HOW: Parallelism & Scheduling of Comm. & Comp.

8(Tang et al., 2020)

https://arxiv.org/abs/2003.06307

Auxiliary Techniques
● Error Accumulation
● Momentum Correction
● Local Gradient Clipping
● Warm-up Training

9

CodedReduce: a Fast and Robust Framework for
Gradient Aggregation in Distributed Learning

Amirhossein Reisizadeh, Saurav Prakash, Ramtin Pedarsani, Amir Salman Avestimehr
2020

https://arxiv.org/abs/1902.01981

Introduction
Two bottlenecks in synchronous SGD:

- Communication bandwidth
- Stragglers’ delays

The former can be addressed with Ring-AllReduce (RAR) and the latter with
Gradient Coding (GC).

But can we have both at once?

Dataset is uniformly partitioned among
N workers.

In each communication round, they
send 1/N fraction of the gradient to their
neighbor.

No straggling resilience.

Background - Ring-AllReduce

Background - Gradient Coding
For robustness against S stragglers,
each worker receives (1+S)/N fraction of
the data set.

Master can recover the full gradient
from N-S workers due to redundancy.

O(1) parallelization gain for fixed
straggler ratio.

Combine redundancy and parallelization
via a tree structure

- L layers, n children per parent
- N=n^L + n^(L-1) + … n workers in

total

Essentially, this is hierarchical Gradient
Coding.

Method - CodedReduce

Method - CodedReduce

1. Allocation
Recursively, every node takes its
fraction of the data and passes the
rest on to its children.

2. Execution
After computing the partial gradient,
each node passes it on to its parent,
starting at the leaves. Upon receiving
n-s messages, the parent passes its
aggregated gradient on.

Theoretical analysis
- For the same straggler resilience, CodedReduce has a lower computation

load per node (fraction of the dataset), compared to Gradient Coding:
- GC: CR:

- Assuming exponentially distributed computation times, the expected run time
scales as

- GC: CR:

Theoretical analysis

17

Empirical evaluation
Training a linear model on N=84
workers

UMW = Uncoded Master-Worker

Empirical evaluation

N=156 workers

Top: Logistic regression (real data)

Bottom: Linear regression (synthetic)

Discussion
Experiments: Very small models only (~5000 parameters)

- How does the efficiency depend on model size?
- Overhead cost of data distribution?

How many actual stragglers were there? Was the exponential model accurate?

20

TicTac: Accelerating Distributed Deep Learning
with Communication Scheduling

Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, Roy H. Campbell
SysML 2019

https://arxiv.org/abs/1803.03288

Context
● Parallel scheduling of communication and computation
● Distributed SGD with Parameter Server architecture

22

Problems Opportunities
● Common DL frameworks model operation as a DAG

● Computation and communication can overlap
○ Computation happens on CPU/GPU
○ Communication happens on NIC

● DAG execution order is not optimized for network communication
○ PS sends params to workers in random order
○ Each worker executes DAG ops in random order

● Suboptimal overlap ➔ suboptimal GPU utilization

23

Example: forward pass

Ops dependencies:

👍

👎

Valid scheduling 1:

Valid scheduling 2:

https://app.diagrams.net/?page-id=02DYS3yeAh50rewTV5bI&scale=auto#G1-dt93LTCSP94f-aMch2x-QKoLpgNm7iX
https://app.diagrams.net/?page-id=CqWuxGp9dASI1Z4-ByYt&scale=auto#G1-dt93LTCSP94f-aMch2x-QKoLpgNm7iX
https://app.diagrams.net/?page-id=-uQV6VhCZKNwTjVfC7hy&scale=auto#G1-dt93LTCSP94f-aMch2x-QKoLpgNm7iX

Metrics
● N Network communication time
● C Computation time
● T Total iteration time

25

https://app.diagrams.net/?page-id=-uQV6VhCZKNwTjVfC7hy&scale=auto#G1-dt93LTCSP94f-aMch2x-QKoLpgNm7iX

Metrics
● N Network communication time
● C Computation time
● T Total iteration time

● Comm/comp ratio

● Overlap coefficient

● GPU utilization

26

GPU utilization

27

Proposed solution
● Heuristic scheduling algorithm to increase GPU utilization

○ Forward pass: PS should send params to workers so that
pending operations can be executed as soon as possible

○ Backward pass: workers should prioritize computing gradients that
can be sent to the PS as soon as possible

● Strategies
○ TIC: assume every computation op takes the same time
○ TAC: include execution time of computation ops in the scheduling heuristic

28

Implementation
● Small modifications to TensorFlow scheduler

29

Tie breaker

Main comparison

Experiments
● Hardware setups

○ GPU cluster (reasonably expensive)
○ CPU cluster

● Workers: 2-16

● Parameter servers: 1-4

● Variable batch size (inference only)

● 10 architectures for computer vision

30

Experiments: training dynamics
● Convergence, generalization, etc. are not affected

31

Experiments: scaling up workers and PSs

32

Speedup

Discussion: VGG vs. ResNet vs. Inception

● VGG: pretty much linear DAG,
not many optimization opportunities

● ResNet: several skip connections,
arbitrary op order can lead to very
bad performances

● Inception: parallel ops give even
more speedup opportunity

Figure: researchgate.net 33

Figure: Inception v3

https://www.researchgate.net/publication/322621180_Deep_neural_networks_show_an_equivalent_and_often_superior_performance_to_dermatologists_in_onychomycosis_diagnosis_Automatic_construction_of_onychomycosis_datasets_by_region-based_convolutional_deep_
https://openaccess.thecvf.com/content_cvpr_2016/papers/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.pdf

Experiments: variable batch size at inference time
● Bigger batches require longer computational

time

● Network transfer time remains the same,
but there is more room for overlap (VGG-19)

● When computation becomes predominant,
speedup is less pronounced (ResNet)

34

● Discussion: At inference time, network transfers need
to happen only once, is it so important to optimize them?

Experiment: Speedup vs. DAG size
● The bigger the DAG, the greater the

optimization opportunity

● Discussion: DAG size alone is not very
informative, one could track:

○ Longest path
○ Avg/max number of direct dependencies
○ Avg number of parallel operations

35

Experiments: time-awareness
● TAC is only slightly better than TIC
● DAG structure alone is enough

36

TIC

TAC

Conclusions
● Being aware of computation/communication overlap when determining the

execution order of a DAG allows optimizing for resource utilization

● Different architectures offer different opportunities for optimization

● Considering the DAG structure alone is enough,
considering op time is slightly better

● Future work:
○ Storage/memory access
○ Network congestion

(workers communicating at the same time could exhaust bandwidth)
○ Optimization in an AllReduce scenario

37

CARAMEL: Accelerating Decentralized Distributed
Deep Learning with Computation Scheduling

Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, Brighten Godfrey, Roy H. Campbell
2020 - preprint?

https://arxiv.org/abs/2004.14020

Background
● Distributed SGD with AllReduce architecture

39

Observed problem
● Standard DL frameworks use the blocking

variant of AllReduce
● Computation DAG, not optimized for efficient

network communication

● Synchronization is parallelized with backward
pass only

● Uneven network load between large and
small parameter transfer times

Random order of param activations
can result in bad schedules

40

Proposed solution
● Goal: increase GPU utilization
● (Heuristic) scheduling to maximize overlap between communication and

computation
○ Increase the time a parameter is available for transfering (transfer window)

● (Heuristic) network optimization to smooth the communication load
○ Smart parameter batching
○ Faster transfer of large parameters via adaptive splitting and pipelining

41

Definitions
● N Network communication time
● C Computation time
● T Total iteration time

Transfer boundary: time in which
aggregation of a parameter is feasible

Start: end of param. update
End: comp. op that reads param.

● Comm/comp ratio

● Overlap coefficient

● GPU utilization

42

Optimization opportunities

● Forward pass not exploited for parallelization
● Many small parameters incur in significant network overhead

43

Caramel Design
1. Dataflow DAG optimizer

○ Goal: maximize
○ Strategy: prioritize computation so that transf. boundary starts earlier
○ Heuristic:

i. Sort params by increasing cost of comp. ops they depend on
ii. Enforce best order in the DAG by introducing dependencies (ensure only one possible

order of execution)
○ Outcome: earlier start boundaries with reduced variance

44

Caramel Design
2. Parameter batching

○ Goal: reduce
○ Strategy: batch small parameters for optimal network communication
○ Heuristic:

i. Fit a linear regression model to predict transfer times
ii. Estimate threshold for batching small params
iii. Either queue param for transfer or add to active batch for later transfer

45

Caramel Design
3. Model-aware network transfer scheduler

○ Goal: increase
○ Strategy: schedule transfers to either bwd or fwd pass
○ Heuristic: greedy bin-packing algorithm (over transfer time and data size)

i. Sort batches by descending size
ii. Assign to bwd or fwd pass
iii. Unassigned batches are assigned to

46

Caramel Design
4. Adaptive depth enforcer

○ Goal: reduce
○ Strategy: choose data chunk sizes (depth) adaptively
○ Heuristic:

i. Depth chosen from 1 to 8
ii. Determined based on batching threshold (as in parameter batching)

47

Evaluation
● Performance for 8/16 workers over Azure cloud (10Gbps).
● Comparison with horovod and parameter server (PS).

48

CARAMEL vs Horovod and PS

49

Ablation study
● Adaptive All Reduce: improve overlap & communication cost.
● Batching: reduce communication overhead
● Transfer boundaries: improve overlap

50

Choice of adaptive decentralized schemes

51

