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Data Parallelism
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Four Dimensions of Data Parallelism
● When?: Communication Synchronization and Frequency

○ Synchronous, Stale-Synchronous, Asynchronous, Local SGD

● Who?: Aggregation Algorithm (System Architecture)
○ Parameter Server, All-Reduce, Gossip

● What?: Communication Compression
○ Quantization, Coding, Sparsification

● How?: Parallelism / Scheduling of Computations and Communications
○ Pipelining, Scheduling
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WHEN: Communication Synchronization & Frequency

5(Tang et al., 2020)
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WHO: Aggregation Algorithm & System Architecture
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WHAT: Communication Compression
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HOW: Parallelism & Scheduling of Comm. & Comp.

8(Tang et al., 2020)
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Auxiliary Techniques
● Error Accumulation
● Momentum Correction
● Local Gradient Clipping
● Warm-up Training
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Introduction
Two bottlenecks in synchronous SGD:

- Communication bandwidth
- Stragglers’ delays

The former can be addressed with Ring-AllReduce (RAR) and the latter with 
Gradient Coding (GC).

But can we have both at once?



Dataset is uniformly partitioned among 
N workers.

In each communication round, they 
send 1/N fraction of the gradient to their 
neighbor.

No straggling resilience.

Background - Ring-AllReduce



Background - Gradient Coding
For robustness against S stragglers, 
each worker receives (1+S)/N fraction of 
the data set.

Master can recover the full gradient 
from N-S workers due to redundancy.

O(1) parallelization gain for fixed 
straggler ratio.



Combine redundancy and parallelization 
via a tree structure

- L layers, n children per parent
- N=n^L + n^(L-1) + … n workers in 

total

Essentially, this is hierarchical Gradient 
Coding.

Method - CodedReduce



Method - CodedReduce

1. Allocation
Recursively, every node takes its 
fraction of the data and passes the 
rest on to its children.

2. Execution
After computing the partial gradient, 
each node passes it on to its parent, 
starting at the leaves. Upon receiving 
n-s messages, the parent passes its 
aggregated gradient on.



Theoretical analysis
- For the same straggler resilience, CodedReduce has a lower computation 

load per node (fraction of the dataset), compared to Gradient Coding:
- GC:                                           CR: 

- Assuming exponentially distributed computation times, the expected run time 
scales as

- GC:                                           CR:



Theoretical analysis
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Empirical evaluation
Training a linear model on N=84 
workers

UMW = Uncoded Master-Worker



Empirical evaluation

N=156 workers

Top: Logistic regression (real data)

Bottom: Linear regression (synthetic)



Discussion
Experiments: Very small models only (~5000 parameters)

- How does the efficiency depend on model size?
- Overhead cost of data distribution?

How many actual stragglers were there? Was the exponential model accurate?
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TicTac: Accelerating Distributed Deep Learning 
with Communication Scheduling

Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, Roy H. Campbell
SysML 2019

https://arxiv.org/abs/1803.03288


Context
● Parallel scheduling of communication and computation
● Distributed SGD with Parameter Server architecture
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Problems Opportunities
● Common DL frameworks model operation as a DAG

● Computation and communication can overlap
○ Computation happens on CPU/GPU
○ Communication happens on NIC

● DAG execution order is not optimized for network communication
○ PS sends params to workers in random order
○ Each worker executes DAG ops in random order

● Suboptimal overlap ➔ suboptimal GPU utilization
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Example: forward pass

Ops dependencies:

👍

👎

Valid scheduling 1:

Valid scheduling 2:

https://app.diagrams.net/?page-id=02DYS3yeAh50rewTV5bI&scale=auto#G1-dt93LTCSP94f-aMch2x-QKoLpgNm7iX
https://app.diagrams.net/?page-id=CqWuxGp9dASI1Z4-ByYt&scale=auto#G1-dt93LTCSP94f-aMch2x-QKoLpgNm7iX
https://app.diagrams.net/?page-id=-uQV6VhCZKNwTjVfC7hy&scale=auto#G1-dt93LTCSP94f-aMch2x-QKoLpgNm7iX


Metrics
● N Network communication time 
● C Computation time
● T Total iteration time
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Metrics
● N Network communication time 
● C Computation time
● T Total iteration time

● Comm/comp ratio

● Overlap coefficient

● GPU utilization
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GPU utilization
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Proposed solution
● Heuristic scheduling algorithm to increase GPU utilization

○ Forward pass: PS should send params to workers so that 
pending operations can be executed as soon as possible

○ Backward pass: workers should prioritize computing gradients that 
can be sent to the PS as soon as possible

● Strategies
○ TIC: assume every computation op takes the same time
○ TAC: include execution time of computation ops in the scheduling heuristic
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Implementation 
● Small modifications to TensorFlow scheduler
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# Tie breaker

# Main comparison



Experiments
● Hardware setups

○ GPU cluster (reasonably expensive)
○ CPU cluster

● Workers: 2-16

● Parameter servers: 1-4

● Variable batch size (inference only)

● 10 architectures for computer vision
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Experiments: training dynamics
● Convergence, generalization, etc. are not affected
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Experiments: scaling up workers and PSs
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Speedup



Discussion: VGG vs. ResNet vs. Inception

● VGG: pretty much linear DAG, 
not many optimization opportunities

● ResNet: several skip connections, 
arbitrary op order can lead to very 
bad performances

● Inception: parallel ops give even 
more speedup opportunity

Figure: researchgate.net 33

Figure: Inception v3

https://www.researchgate.net/publication/322621180_Deep_neural_networks_show_an_equivalent_and_often_superior_performance_to_dermatologists_in_onychomycosis_diagnosis_Automatic_construction_of_onychomycosis_datasets_by_region-based_convolutional_deep_
https://openaccess.thecvf.com/content_cvpr_2016/papers/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.pdf


Experiments: variable batch size at inference time
● Bigger batches require longer computational 

time 

● Network transfer time remains the same, 
but there is more room for overlap (VGG-19)

● When computation becomes predominant, 
speedup is less pronounced (ResNet)
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● Discussion: At inference time, network transfers need 
to happen only once, is it so important to optimize them?



Experiment: Speedup vs. DAG size
● The bigger the DAG, the greater the 

optimization opportunity

● Discussion: DAG size alone is not very 
informative, one could track:

○ Longest path
○ Avg/max number of direct dependencies
○ Avg number of parallel operations
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Experiments: time-awareness
● TAC is only slightly better than TIC
● DAG structure alone is enough
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TIC

TAC



Conclusions
● Being aware of computation/communication overlap when determining the 

execution order of a DAG allows optimizing for resource utilization

● Different architectures offer different opportunities for optimization

● Considering the DAG structure alone is enough, 
considering op time is slightly better

● Future work:
○ Storage/memory access
○ Network congestion 

(workers communicating at the same time could exhaust bandwidth)
○ Optimization in an AllReduce scenario
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CARAMEL: Accelerating Decentralized Distributed 
Deep Learning with Computation Scheduling

Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, Brighten Godfrey, Roy H. Campbell
2020 - preprint?

https://arxiv.org/abs/2004.14020


Background
● Distributed SGD with AllReduce architecture
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Observed problem
● Standard DL frameworks use the blocking 

variant of AllReduce
● Computation DAG, not optimized for efficient 

network communication

● Synchronization is parallelized with backward 
pass only

● Uneven network load between large and 
small parameter transfer times

Random order of param activations 
can result in bad schedules
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Proposed solution
● Goal: increase GPU utilization
● (Heuristic) scheduling to maximize overlap between communication and 

computation
○ Increase the time a parameter is available for transfering (transfer window)

● (Heuristic) network optimization to smooth the communication load
○ Smart parameter batching
○ Faster transfer of large parameters via adaptive splitting and pipelining
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Definitions
● N Network communication time 
● C Computation time
● T Total iteration time

Transfer boundary: time in which 
aggregation of a parameter is feasible

Start: end of param. update 
End: comp. op that reads param.

● Comm/comp ratio

● Overlap coefficient

● GPU utilization

42



Optimization opportunities

● Forward pass not exploited for parallelization
● Many small parameters incur in significant network overhead
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Caramel Design
1. Dataflow DAG optimizer

○ Goal: maximize 
○ Strategy: prioritize computation so that transf. boundary starts earlier
○ Heuristic:

i. Sort params by increasing cost of comp. ops they depend on
ii. Enforce best order in the DAG by introducing dependencies (ensure only one possible 

order of execution)
○ Outcome: earlier start boundaries with reduced variance
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Caramel Design
2. Parameter batching

○ Goal: reduce 
○ Strategy: batch small parameters for optimal network communication
○ Heuristic:

i. Fit a linear regression model to predict transfer times
ii. Estimate threshold for batching small params
iii. Either queue param for transfer or add to active batch for later transfer
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Caramel Design
3. Model-aware network transfer scheduler

○ Goal: increase 
○ Strategy: schedule transfers to either bwd or fwd pass
○ Heuristic: greedy bin-packing algorithm (over transfer time and data size)

i. Sort batches by descending size
ii. Assign to bwd or fwd pass
iii. Unassigned batches are assigned to 
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Caramel Design
4. Adaptive depth enforcer

○ Goal: reduce 
○ Strategy: choose data chunk sizes (depth) adaptively
○ Heuristic: 

i. Depth chosen from 1 to 8
ii. Determined based on batching threshold (as in parameter batching)

47



Evaluation
● Performance for 8/16 workers over Azure cloud (10Gbps).
● Comparison with horovod and parameter server (PS).
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CARAMEL vs Horovod and PS
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Ablation study
● Adaptive All Reduce: improve overlap & communication cost.
● Batching: reduce communication overhead
● Transfer boundaries: improve overlap
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Choice of adaptive decentralized schemes
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