
Distributed Learning - Data Parallelization

Amir H. Payberah
payberah@kth.se

2020-10-12

The Course Web Page

https://fid3024.github.io

1 / 69

Data Parallelization (1/4)

I Replicate a whole model on every device.

I Train all replicas simultaneously, using a different mini-batch for each.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

2 / 69

Data Parallelization (1/4)

I Replicate a whole model on every device.

I Train all replicas simultaneously, using a different mini-batch for each.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

2 / 69

Data Parallelization (2/4)

I k devices

I Ji(w) = 1
|βi|
∑

x∈βi l(x,w), ∀i = 1, 2, · · · , k

I Gi(w, βi) = 1
|βi|
∑

x∈βi ∇l(w, x)

I Gi(w, βi): the local estimate of the gradient of the loss function ∇Ji(w).

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

3 / 69

Data Parallelization (2/4)

I k devices

I Ji(w) = 1
|βi|
∑

x∈βi l(x,w), ∀i = 1, 2, · · · , k

I Gi(w, βi) = 1
|βi|
∑

x∈βi ∇l(w, x)

I Gi(w, βi): the local estimate of the gradient of the loss function ∇Ji(w).

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

3 / 69

Data Parallelization (2/4)

I k devices

I Ji(w) = 1
|βi|
∑

x∈βi l(x,w), ∀i = 1, 2, · · · , k

I Gi(w, βi) = 1
|βi|
∑

x∈βi ∇l(w, x)

I Gi(w, βi): the local estimate of the gradient of the loss function ∇Ji(w).

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

3 / 69

Data Parallelization (2/4)

I k devices

I Ji(w) = 1
|βi|
∑

x∈βi l(x,w), ∀i = 1, 2, · · · , k

I Gi(w, βi) = 1
|βi|
∑

x∈βi ∇l(w, x)

I Gi(w, βi): the local estimate of the gradient of the loss function ∇Ji(w).

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

3 / 69

Data Parallelization (3/4)

I Compute the gradients aggregation (e.g., mean of the gradients).

I F(G1, · · · , Gk) = 1
k

∑k
i=1 Gi(w, βi)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

4 / 69

Data Parallelization (4/4)

I Update the model.

I w := w − ηF(G1, · · · , Gk)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

5 / 69

Data Parallelization Design Issues

I The aggregation algorithm

I Communication synchronization and frequency

I Communication compression

I Parallelism of computations and communications

6 / 69

The Aggregation Algorithm

7 / 69

The Aggregation Algorithm

I How to aggregate gradients (compute the mean of the gradients)?

I Centralized - parameter server

I Decentralized - all-reduce

I Decentralized - gossip

8 / 69

The Aggregation Algorithm

I How to aggregate gradients (compute the mean of the gradients)?

I Centralized - parameter server

I Decentralized - all-reduce

I Decentralized - gossip

8 / 69

The Aggregation Algorithm

I How to aggregate gradients (compute the mean of the gradients)?

I Centralized - parameter server

I Decentralized - all-reduce

I Decentralized - gossip

8 / 69

The Aggregation Algorithm

I How to aggregate gradients (compute the mean of the gradients)?

I Centralized - parameter server

I Decentralized - all-reduce

I Decentralized - gossip

8 / 69

Aggregation - Centralized - Parameter Server

I Store the model parameters outside of the workers.

I Workers periodically report their computed parameters or parameter updates to a
(set of) parameter server(s) (PSs).

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

9 / 69

Aggregation - Centralized - Parameter Server

I Store the model parameters outside of the workers.

I Workers periodically report their computed parameters or parameter updates to a
(set of) parameter server(s) (PSs).

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

9 / 69

Aggregation - Distributed - All-Reduce

I Mirror all the model parameters across all workers (no PS).

I Workers exchange parameter updates directly via an allreduce operation.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

10 / 69

Aggregation - Distributed - All-Reduce

I Mirror all the model parameters across all workers (no PS).

I Workers exchange parameter updates directly via an allreduce operation.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

10 / 69

Aggregation - Distributed - Gossip

I No PS, and no global model.

I Every worker communicates updates with their neighbors.

I The consistency of parameters across all workers only at the end of the algorithm.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

11 / 69

Aggregation - Distributed - Gossip

I No PS, and no global model.

I Every worker communicates updates with their neighbors.

I The consistency of parameters across all workers only at the end of the algorithm.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

11 / 69

Aggregation - Distributed - Gossip

I No PS, and no global model.

I Every worker communicates updates with their neighbors.

I The consistency of parameters across all workers only at the end of the algorithm.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

11 / 69

Reduce and AllReduce (1/2)

I Reduce: reducing a set of numbers into a smaller set of numbers via a function.

I E.g., sum([1, 2, 3, 4, 5]) = 15

I Reduce takes an array of input elements on each process and returns an array of
output elements to the root process.

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]

12 / 69

Reduce and AllReduce (1/2)

I Reduce: reducing a set of numbers into a smaller set of numbers via a function.

I E.g., sum([1, 2, 3, 4, 5]) = 15

I Reduce takes an array of input elements on each process and returns an array of
output elements to the root process.

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]

12 / 69

Reduce and AllReduce (1/2)

I Reduce: reducing a set of numbers into a smaller set of numbers via a function.

I E.g., sum([1, 2, 3, 4, 5]) = 15

I Reduce takes an array of input elements on each process and returns an array of
output elements to the root process.

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]

12 / 69

Reduce and AllReduce (1/2)

I Reduce: reducing a set of numbers into a smaller set of numbers via a function.

I E.g., sum([1, 2, 3, 4, 5]) = 15

I Reduce takes an array of input elements on each process and returns an array of
output elements to the root process.

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]

12 / 69

Reduce and AllReduce (2/2)

I AllReduce stores reduced results across all processes rather than the root process.

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]

13 / 69

Reduce and AllReduce (2/2)

I AllReduce stores reduced results across all processes rather than the root process.

[https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce]

13 / 69

AllReduce Example

Initial state After AllReduce operation

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

14 / 69

AllReduce Implementation

I All-to-all allreduce

I Master-worker allreduce

I Tree allreduce

I Round-robin allreduce

I Butterfly allreduce

I Ring allreduce

15 / 69

AllReduce Implementation - All-to-All AllReduce

I Send the array of data to each other.

I Apply the reduction operation on each process.

I Too many unnecessary messages.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

16 / 69

AllReduce Implementation - All-to-All AllReduce

I Send the array of data to each other.

I Apply the reduction operation on each process.

I Too many unnecessary messages.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

16 / 69

AllReduce Implementation - Master-Worker AllReduce

I Selecting one process as a master, gather all arrays into the master.

I Perform reduction operations locally in the master.

I Distribute the result to the other processes.

I The master becomes a bottleneck (not scalable).

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

17 / 69

AllReduce Implementation - Master-Worker AllReduce

I Selecting one process as a master, gather all arrays into the master.

I Perform reduction operations locally in the master.

I Distribute the result to the other processes.

I The master becomes a bottleneck (not scalable).

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

17 / 69

AllReduce Implementation - Other implementations

I Some try to minimize bandwidth.

I Some try to minimize latency.

[Zhao H. et al., arXiv:1312.3020, 2013]

18 / 69

AllReduce Implementation - Ring-AllReduce (1/6)

I The Ring-Allreduce has two phases:

1. First, the share-reduce phase
2. Then, the share-only phase

19 / 69

AllReduce Implementation - Ring-AllReduce (2/6)

I In the share-reduce phase, each process p sends data to the process (p+1)%m
• m is the number of processes, and % is the modulo operator.

I The array of data on each process is divided to m chunks (m=4 here).

I Each one of these chunks will be indexed by i going forward.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

20 / 69

AllReduce Implementation - Ring-AllReduce (2/6)

I In the share-reduce phase, each process p sends data to the process (p+1)%m
• m is the number of processes, and % is the modulo operator.

I The array of data on each process is divided to m chunks (m=4 here).

I Each one of these chunks will be indexed by i going forward.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

20 / 69

AllReduce Implementation - Ring-AllReduce (2/6)

I In the share-reduce phase, each process p sends data to the process (p+1)%m
• m is the number of processes, and % is the modulo operator.

I The array of data on each process is divided to m chunks (m=4 here).

I Each one of these chunks will be indexed by i going forward.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

20 / 69

AllReduce Implementation - Ring-AllReduce (3/6)

I In the first share-reduce step, process A sends a0 to process B.

I Process B sends b1 to process C, etc.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

21 / 69

AllReduce Implementation - Ring-AllReduce (3/6)

I In the first share-reduce step, process A sends a0 to process B.

I Process B sends b1 to process C, etc.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

21 / 69

AllReduce Implementation - Ring-AllReduce (4/6)

I When each process receives the data from the previous process, it applies the reduce
operator (e.g., sum)

• The reduce operator should be associative and commutative.

I It then proceeds to send it to the next process in the ring.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

22 / 69

AllReduce Implementation - Ring-AllReduce (4/6)

I When each process receives the data from the previous process, it applies the reduce
operator (e.g., sum)

• The reduce operator should be associative and commutative.

I It then proceeds to send it to the next process in the ring.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

22 / 69

AllReduce Implementation - Ring-AllReduce (4/6)

I When each process receives the data from the previous process, it applies the reduce
operator (e.g., sum)

• The reduce operator should be associative and commutative.

I It then proceeds to send it to the next process in the ring.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

22 / 69

AllReduce Implementation - Ring-AllReduce (5/6)

I The share-reduce phase finishes when each process holds the complete reduction of
chunk i.

I At this point each process holds a part of the end result.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

23 / 69

AllReduce Implementation - Ring-AllReduce (5/6)

I The share-reduce phase finishes when each process holds the complete reduction of
chunk i.

I At this point each process holds a part of the end result.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

23 / 69

AllReduce Implementation - Ring-AllReduce (6/6)

I The share-only step is the same process of sharing the data in a ring-like fashion
without applying the reduce operation.

I This consolidates the result of each chunk in every process.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

24 / 69

AllReduce Implementation - Ring-AllReduce (6/6)

I The share-only step is the same process of sharing the data in a ring-like fashion
without applying the reduce operation.

I This consolidates the result of each chunk in every process.

[https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-d1f34b4911da]

24 / 69

Master-Worker AllReduce vs. Ring-AllReduce

I N: number of elements, m: number of processes

I Master-Worker AllReduce

• First each process sends N elements to the master: N× (m− 1) messages.
• Then the master sends the results back to the process: another N× (m− 1) messages.
• Total network traffic is 2(N× (m− 1)), which is proportional to m.

I Ring-AllReduce

• In the share-reduce step each process sends N
m

elements, and it does it m − 1 times:
N
m
× (m− 1) messages.

• On the share-only step, each process sends the result for the chunk it calculated: another
N
m
× (m− 1) messages.

• Total network traffic is 2(N
m
× (m− 1)).

25 / 69

Master-Worker AllReduce vs. Ring-AllReduce

I N: number of elements, m: number of processes

I Master-Worker AllReduce

• First each process sends N elements to the master: N× (m− 1) messages.
• Then the master sends the results back to the process: another N× (m− 1) messages.
• Total network traffic is 2(N× (m− 1)), which is proportional to m.

I Ring-AllReduce

• In the share-reduce step each process sends N
m

elements, and it does it m − 1 times:
N
m
× (m− 1) messages.

• On the share-only step, each process sends the result for the chunk it calculated: another
N
m
× (m− 1) messages.

• Total network traffic is 2(N
m
× (m− 1)).

25 / 69

Master-Worker AllReduce vs. Ring-AllReduce

I N: number of elements, m: number of processes

I Master-Worker AllReduce
• First each process sends N elements to the master: N× (m− 1) messages.

• Then the master sends the results back to the process: another N× (m− 1) messages.
• Total network traffic is 2(N× (m− 1)), which is proportional to m.

I Ring-AllReduce

• In the share-reduce step each process sends N
m

elements, and it does it m − 1 times:
N
m
× (m− 1) messages.

• On the share-only step, each process sends the result for the chunk it calculated: another
N
m
× (m− 1) messages.

• Total network traffic is 2(N
m
× (m− 1)).

25 / 69

Master-Worker AllReduce vs. Ring-AllReduce

I N: number of elements, m: number of processes

I Master-Worker AllReduce
• First each process sends N elements to the master: N× (m− 1) messages.
• Then the master sends the results back to the process: another N× (m− 1) messages.

• Total network traffic is 2(N× (m− 1)), which is proportional to m.

I Ring-AllReduce

• In the share-reduce step each process sends N
m

elements, and it does it m − 1 times:
N
m
× (m− 1) messages.

• On the share-only step, each process sends the result for the chunk it calculated: another
N
m
× (m− 1) messages.

• Total network traffic is 2(N
m
× (m− 1)).

25 / 69

Master-Worker AllReduce vs. Ring-AllReduce

I N: number of elements, m: number of processes

I Master-Worker AllReduce
• First each process sends N elements to the master: N× (m− 1) messages.
• Then the master sends the results back to the process: another N× (m− 1) messages.
• Total network traffic is 2(N× (m− 1)), which is proportional to m.

I Ring-AllReduce

• In the share-reduce step each process sends N
m

elements, and it does it m − 1 times:
N
m
× (m− 1) messages.

• On the share-only step, each process sends the result for the chunk it calculated: another
N
m
× (m− 1) messages.

• Total network traffic is 2(N
m
× (m− 1)).

25 / 69

Master-Worker AllReduce vs. Ring-AllReduce

I N: number of elements, m: number of processes

I Master-Worker AllReduce
• First each process sends N elements to the master: N× (m− 1) messages.
• Then the master sends the results back to the process: another N× (m− 1) messages.
• Total network traffic is 2(N× (m− 1)), which is proportional to m.

I Ring-AllReduce

• In the share-reduce step each process sends N
m

elements, and it does it m − 1 times:
N
m
× (m− 1) messages.

• On the share-only step, each process sends the result for the chunk it calculated: another
N
m
× (m− 1) messages.

• Total network traffic is 2(N
m
× (m− 1)).

25 / 69

Master-Worker AllReduce vs. Ring-AllReduce

I N: number of elements, m: number of processes

I Master-Worker AllReduce
• First each process sends N elements to the master: N× (m− 1) messages.
• Then the master sends the results back to the process: another N× (m− 1) messages.
• Total network traffic is 2(N× (m− 1)), which is proportional to m.

I Ring-AllReduce
• In the share-reduce step each process sends N

m
elements, and it does it m − 1 times:

N
m
× (m− 1) messages.

• On the share-only step, each process sends the result for the chunk it calculated: another
N
m
× (m− 1) messages.

• Total network traffic is 2(N
m
× (m− 1)).

25 / 69

Master-Worker AllReduce vs. Ring-AllReduce

I N: number of elements, m: number of processes

I Master-Worker AllReduce
• First each process sends N elements to the master: N× (m− 1) messages.
• Then the master sends the results back to the process: another N× (m− 1) messages.
• Total network traffic is 2(N× (m− 1)), which is proportional to m.

I Ring-AllReduce
• In the share-reduce step each process sends N

m
elements, and it does it m − 1 times:

N
m
× (m− 1) messages.

• On the share-only step, each process sends the result for the chunk it calculated: another
N
m
× (m− 1) messages.

• Total network traffic is 2(N
m
× (m− 1)).

25 / 69

Master-Worker AllReduce vs. Ring-AllReduce

I N: number of elements, m: number of processes

I Master-Worker AllReduce
• First each process sends N elements to the master: N× (m− 1) messages.
• Then the master sends the results back to the process: another N× (m− 1) messages.
• Total network traffic is 2(N× (m− 1)), which is proportional to m.

I Ring-AllReduce
• In the share-reduce step each process sends N

m
elements, and it does it m − 1 times:

N
m
× (m− 1) messages.

• On the share-only step, each process sends the result for the chunk it calculated: another
N
m
× (m− 1) messages.

• Total network traffic is 2(N
m
× (m− 1)).

25 / 69

Communication Synchronization and Frequency

26 / 69

Synchronization

I When to synchronize the parameters among the parallel workers?

27 / 69

Communication Synchronization (1/2)

I Synchronizing the model replicas in data-parallel training requires communication
• between workers, in allreduce
• between workers and parameter servers, in the centralized architecture

I The communication synchronization decides how frequently all local models are syn-
chronized with others.

28 / 69

Communication Synchronization (1/2)

I Synchronizing the model replicas in data-parallel training requires communication
• between workers, in allreduce
• between workers and parameter servers, in the centralized architecture

I The communication synchronization decides how frequently all local models are syn-
chronized with others.

28 / 69

Communication Synchronization (2/2)

I It will influence:
• The communication traffic
• The performance
• The convergence of model training

I There is a trade-off between the communication traffic and the convergence.

29 / 69

Communication Synchronization (2/2)

I It will influence:
• The communication traffic
• The performance
• The convergence of model training

I There is a trade-off between the communication traffic and the convergence.

29 / 69

Reducing Synchronization Overhead

I Two directions for improvement:

1. To relax the synchronization among all workers.

2. The frequency of communication can be reduced by more computation in one
iteration.

30 / 69

Reducing Synchronization Overhead

I Two directions for improvement:

1. To relax the synchronization among all workers.

2. The frequency of communication can be reduced by more computation in one
iteration.

30 / 69

Reducing Synchronization Overhead

I Two directions for improvement:

1. To relax the synchronization among all workers.

2. The frequency of communication can be reduced by more computation in one
iteration.

30 / 69

Communication Synchronization Models

I Synchronous

I Stale-synchronous

I Asynchronous

I Local SGD

31 / 69

Communication Synchronization - Synchronous

I After each iteration, the workers synchronize their parameter updates.

I Every worker must wait for all workers to finish the transmission of all parameters in
the current iteration, before the next training.

I Stragglers can influence the overall system throughput.

I High communication cost that limits the system scalability.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

32 / 69

Communication Synchronization - Synchronous

I After each iteration, the workers synchronize their parameter updates.

I Every worker must wait for all workers to finish the transmission of all parameters in
the current iteration, before the next training.

I Stragglers can influence the overall system throughput.

I High communication cost that limits the system scalability.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

32 / 69

Communication Synchronization - Synchronous

I After each iteration, the workers synchronize their parameter updates.

I Every worker must wait for all workers to finish the transmission of all parameters in
the current iteration, before the next training.

I Stragglers can influence the overall system throughput.

I High communication cost that limits the system scalability.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

32 / 69

Communication Synchronization - Synchronous

I After each iteration, the workers synchronize their parameter updates.

I Every worker must wait for all workers to finish the transmission of all parameters in
the current iteration, before the next training.

I Stragglers can influence the overall system throughput.

I High communication cost that limits the system scalability.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

32 / 69

Communication Synchronization - Stale Synchronous (1/2)

I Alleviate the straggler problem without losing synchronization.

I The faster workers to do more updates than the slower workers to reduce the waiting
time of the faster workers.

I Staleness bounded barrier to limit the iteration gap between the fastest worker and
the slowest worker.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

33 / 69

Communication Synchronization - Stale Synchronous (1/2)

I Alleviate the straggler problem without losing synchronization.

I The faster workers to do more updates than the slower workers to reduce the waiting
time of the faster workers.

I Staleness bounded barrier to limit the iteration gap between the fastest worker and
the slowest worker.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

33 / 69

Communication Synchronization - Stale Synchronous (1/2)

I Alleviate the straggler problem without losing synchronization.

I The faster workers to do more updates than the slower workers to reduce the waiting
time of the faster workers.

I Staleness bounded barrier to limit the iteration gap between the fastest worker and
the slowest worker.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

33 / 69

Communication Synchronization - Stale Synchronous (2/2)

I For a maximum staleness bound s, the update formula of worker i at iteration t+1:

I wi,t+1 := w0 − η(
∑t

k=1

∑n
j=1 Gj,k +

∑t
k=t−s Gi,k +

∑
(j,k)∈Si,t+1

Gj,k)

I The update has three parts:

1. Guaranteed pre-window updates from clock 1 to t over all workers.
2. Guaranteed read-my-writes in-window updates made by the querying worker i.
3. Best-effort in-window updates. Si,t+1 is some subset of the updates from other workers

during period [t− s].

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

34 / 69

Communication Synchronization - Stale Synchronous (2/2)

I For a maximum staleness bound s, the update formula of worker i at iteration t+1:

I wi,t+1 := w0 − η(
∑t

k=1

∑n
j=1 Gj,k +

∑t
k=t−s Gi,k +

∑
(j,k)∈Si,t+1

Gj,k)

I The update has three parts:

1. Guaranteed pre-window updates from clock 1 to t over all workers.
2. Guaranteed read-my-writes in-window updates made by the querying worker i.
3. Best-effort in-window updates. Si,t+1 is some subset of the updates from other workers

during period [t− s].

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

34 / 69

Communication Synchronization - Stale Synchronous (2/2)

I For a maximum staleness bound s, the update formula of worker i at iteration t+1:

I wi,t+1 := w0 − η(
∑t

k=1

∑n
j=1 Gj,k +

∑t
k=t−s Gi,k +

∑
(j,k)∈Si,t+1

Gj,k)

I The update has three parts:

1. Guaranteed pre-window updates from clock 1 to t over all workers.

2. Guaranteed read-my-writes in-window updates made by the querying worker i.
3. Best-effort in-window updates. Si,t+1 is some subset of the updates from other workers

during period [t− s].

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

34 / 69

Communication Synchronization - Stale Synchronous (2/2)

I For a maximum staleness bound s, the update formula of worker i at iteration t+1:

I wi,t+1 := w0 − η(
∑t

k=1

∑n
j=1 Gj,k +

∑t
k=t−s Gi,k +

∑
(j,k)∈Si,t+1

Gj,k)

I The update has three parts:

1. Guaranteed pre-window updates from clock 1 to t over all workers.
2. Guaranteed read-my-writes in-window updates made by the querying worker i.

3. Best-effort in-window updates. Si,t+1 is some subset of the updates from other workers
during period [t− s].

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

34 / 69

Communication Synchronization - Stale Synchronous (2/2)

I For a maximum staleness bound s, the update formula of worker i at iteration t+1:

I wi,t+1 := w0 − η(
∑t

k=1

∑n
j=1 Gj,k +

∑t
k=t−s Gi,k +

∑
(j,k)∈Si,t+1

Gj,k)

I The update has three parts:

1. Guaranteed pre-window updates from clock 1 to t over all workers.
2. Guaranteed read-my-writes in-window updates made by the querying worker i.
3. Best-effort in-window updates. Si,t+1 is some subset of the updates from other workers

during period [t− s].

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

34 / 69

Communication Synchronization - Asynchronous (1/2)

I It completely eliminates the synchronization.

I Each work transmits its gradients to the PS after it calculates the gradients.

I The PS updates the global model without waiting for the other workers.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

35 / 69

Communication Synchronization - Asynchronous (1/2)

I It completely eliminates the synchronization.

I Each work transmits its gradients to the PS after it calculates the gradients.

I The PS updates the global model without waiting for the other workers.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

35 / 69

Communication Synchronization - Asynchronous (1/2)

I It completely eliminates the synchronization.

I Each work transmits its gradients to the PS after it calculates the gradients.

I The PS updates the global model without waiting for the other workers.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

35 / 69

Communication Synchronization - Asynchronous (2/2)

I wt+1 := wt − η
∑n

i=1 Gi,t−τk,i

I τk,i is the time delay between the moment when worker i calculates the gradient at
the current iteration.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

36 / 69

Communication Synchronization - Asynchronous (2/2)

I wt+1 := wt − η
∑n

i=1 Gi,t−τk,i

I τk,i is the time delay between the moment when worker i calculates the gradient at
the current iteration.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

36 / 69

Communication Synchronization - Local SGD

I All workers run several iterations, and then averages all local models into the newest
global model.

I If IT represents the synchronization timestamps, then:

wi,t+1 =

{
wi,t − ηGi,t if t + 1 /∈ IT
wi,t − η 1n

∑n
i=1 Gi,t if t + 1 ∈ IT

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

37 / 69

Communication Synchronization - Local SGD

I All workers run several iterations, and then averages all local models into the newest
global model.

I If IT represents the synchronization timestamps, then:

wi,t+1 =

{
wi,t − ηGi,t if t + 1 /∈ IT
wi,t − η 1n

∑n
i=1 Gi,t if t + 1 ∈ IT

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

37 / 69

Communication Compression

38 / 69

Communication Compression

I Reduce the communication traffic with little impact on the model convergence.

I Compress the exchanged gradients or models before transmitting across the network.

I Quantization

I Sparsification

39 / 69

Communication Compression

I Reduce the communication traffic with little impact on the model convergence.

I Compress the exchanged gradients or models before transmitting across the network.

I Quantization

I Sparsification

39 / 69

Communication Compression

I Reduce the communication traffic with little impact on the model convergence.

I Compress the exchanged gradients or models before transmitting across the network.

I Quantization

I Sparsification

39 / 69

Communication Compression

I Reduce the communication traffic with little impact on the model convergence.

I Compress the exchanged gradients or models before transmitting across the network.

I Quantization

I Sparsification

39 / 69

Communication Compression - Quantization

I Useing lower bits to represent the data.

I The gradients are of low precision.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

40 / 69

Communication Compression - Quantization

I Useing lower bits to represent the data.

I The gradients are of low precision.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

40 / 69

Communication Compression - Sparsification

I Reducing the number of elements that are transmitted at each iteration.

I Only significant gradients are required to update the model parameter to guarantee
the convergence of the training.

I E.g., the zero-valued elements are no need to transmit.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

41 / 69

Communication Compression - Sparsification

I Reducing the number of elements that are transmitted at each iteration.

I Only significant gradients are required to update the model parameter to guarantee
the convergence of the training.

I E.g., the zero-valued elements are no need to transmit.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

41 / 69

Communication Compression - Sparsification

I Reducing the number of elements that are transmitted at each iteration.

I Only significant gradients are required to update the model parameter to guarantee
the convergence of the training.

I E.g., the zero-valued elements are no need to transmit.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

41 / 69

Parallelism of Computations and Communications

42 / 69

Parallelism of Computations and Communications (1/3)

I The layer-wise structure of deep models makes it possible to parallels the communi-
cation and computing tasks.

I Optimizing the order of computation and communication such that the communica-
tion cost can be minimized

43 / 69

Parallelism of Computations and Communications (1/3)

I The layer-wise structure of deep models makes it possible to parallels the communi-
cation and computing tasks.

I Optimizing the order of computation and communication such that the communica-
tion cost can be minimized

43 / 69

Parallelism of Computations and Communications (2/3)

I Wait-free backward propagation (WFBP)

I Merged-gradient WFBP (MG-WFBP)

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]

44 / 69

Parallelism of Computations and Communications (3/3)

Wait-free backward propagation (WFBP)

Merged-gradient WFBP (MG-WFBP)
[shi et al., MG-WFBP: Efficient Data Communication for Distributed Synchronous SGD Algorithms, 2018]

45 / 69

Parallelism of Computations and Communications (3/3)

Wait-free backward propagation (WFBP)

Merged-gradient WFBP (MG-WFBP)
[shi et al., MG-WFBP: Efficient Data Communication for Distributed Synchronous SGD Algorithms, 2018]

45 / 69

Parallelism of Computations and Communications (3/3)

Wait-free backward propagation (WFBP)

Merged-gradient WFBP (MG-WFBP)
[shi et al., MG-WFBP: Efficient Data Communication for Distributed Synchronous SGD Algorithms, 2018]

45 / 69

TicTac: Accelerating Distributed
Deep Learning with

Communication Scheduling

46 / 69

Computation vs. Communication

I The iteration time in deep learning systems depends on the time taken by

1. Computation
2. Communication
3. The overlap between the two

I When workers receive the parameters from the PS at the beginning of each iteration,
all parameters are not used simultaneously.

I Identifying the best schedule of parameter transfers is critical for reducing the blocking
on computation.

[shi et al., MG-WFBP: Efficient Data Communication for Distributed Synchronous SGD Algorithms, 2018]

47 / 69

Computation vs. Communication

I The iteration time in deep learning systems depends on the time taken by

1. Computation
2. Communication
3. The overlap between the two

I When workers receive the parameters from the PS at the beginning of each iteration,
all parameters are not used simultaneously.

I Identifying the best schedule of parameter transfers is critical for reducing the blocking
on computation.

[shi et al., MG-WFBP: Efficient Data Communication for Distributed Synchronous SGD Algorithms, 2018]

47 / 69

Computation vs. Communication

I The iteration time in deep learning systems depends on the time taken by

1. Computation
2. Communication
3. The overlap between the two

I When workers receive the parameters from the PS at the beginning of each iteration,
all parameters are not used simultaneously.

I Identifying the best schedule of parameter transfers is critical for reducing the blocking
on computation.

[shi et al., MG-WFBP: Efficient Data Communication for Distributed Synchronous SGD Algorithms, 2018]

47 / 69

Good vs. Bad Execution Order

[Hashemi et al., TicTac: Accelerating Distributed Deep Learning with Communication Scheduling, 2019]

48 / 69

High GPU Utilization

I High GPU utilization can be achieved in two ways:

1. When total communication time is less than or equal to the computation time.
2. With efficient overlap of communication and computation.

I Techniques improve GPU utilization:

• Increasing computation time
• Decreasing communication time
• Better interleaving of computation and communication

49 / 69

High GPU Utilization

I High GPU utilization can be achieved in two ways:

1. When total communication time is less than or equal to the computation time.

2. With efficient overlap of communication and computation.

I Techniques improve GPU utilization:

• Increasing computation time
• Decreasing communication time
• Better interleaving of computation and communication

49 / 69

High GPU Utilization

I High GPU utilization can be achieved in two ways:

1. When total communication time is less than or equal to the computation time.
2. With efficient overlap of communication and computation.

I Techniques improve GPU utilization:

• Increasing computation time
• Decreasing communication time
• Better interleaving of computation and communication

49 / 69

High GPU Utilization

I High GPU utilization can be achieved in two ways:

1. When total communication time is less than or equal to the computation time.
2. With efficient overlap of communication and computation.

I Techniques improve GPU utilization:

• Increasing computation time
• Decreasing communication time
• Better interleaving of computation and communication

49 / 69

High GPU Utilization

I High GPU utilization can be achieved in two ways:

1. When total communication time is less than or equal to the computation time.
2. With efficient overlap of communication and computation.

I Techniques improve GPU utilization:
• Increasing computation time

• Decreasing communication time
• Better interleaving of computation and communication

49 / 69

High GPU Utilization

I High GPU utilization can be achieved in two ways:

1. When total communication time is less than or equal to the computation time.
2. With efficient overlap of communication and computation.

I Techniques improve GPU utilization:
• Increasing computation time
• Decreasing communication time

• Better interleaving of computation and communication

49 / 69

High GPU Utilization

I High GPU utilization can be achieved in two ways:

1. When total communication time is less than or equal to the computation time.
2. With efficient overlap of communication and computation.

I Techniques improve GPU utilization:
• Increasing computation time
• Decreasing communication time
• Better interleaving of computation and communication

49 / 69

Overlap Coefficient (1/2)

I Overlap coefficient: α = N+C−T
min(N,C)

I T: the actual iteration time

I N: the communication time

I C: the computation time

I N + C is the iteration time when there is no overlap

50 / 69

Overlap Coefficient (1/2)

I Overlap coefficient: α = N+C−T
min(N,C)

I T: the actual iteration time

I N: the communication time

I C: the computation time

I N + C is the iteration time when there is no overlap

50 / 69

Overlap Coefficient (1/2)

I Overlap coefficient: α = N+C−T
min(N,C)

I T: the actual iteration time

I N: the communication time

I C: the computation time

I N + C is the iteration time when there is no overlap

50 / 69

Overlap Coefficient (1/2)

I Overlap coefficient: α = N+C−T
min(N,C)

I T: the actual iteration time

I N: the communication time

I C: the computation time

I N + C is the iteration time when there is no overlap

50 / 69

Overlap Coefficient (1/2)

I Overlap coefficient: α = N+C−T
min(N,C)

I T: the actual iteration time

I N: the communication time

I C: the computation time

I N + C is the iteration time when there is no overlap

50 / 69

Overlap Coefficient (2/2)

I Overlap coefficient: α = N+C−T
min(N,C)

I The maximum overlap possible is given by min(N, C), which is achieved when the
smaller quantity completely overlaps with the large quantity.

I GPU utilization: U = C
T

= C
N+C−αmin(N,C) = 1

1+ρ−αmin(ρ,1)

I ρ = N
C

: the communication/computation ratio

51 / 69

Overlap Coefficient (2/2)

I Overlap coefficient: α = N+C−T
min(N,C)

I The maximum overlap possible is given by min(N, C), which is achieved when the
smaller quantity completely overlaps with the large quantity.

I GPU utilization: U = C
T

= C
N+C−αmin(N,C) = 1

1+ρ−αmin(ρ,1)

I ρ = N
C

: the communication/computation ratio

51 / 69

Overlap Coefficient (2/2)

I Overlap coefficient: α = N+C−T
min(N,C)

I The maximum overlap possible is given by min(N, C), which is achieved when the
smaller quantity completely overlaps with the large quantity.

I GPU utilization: U = C
T

= C
N+C−αmin(N,C) = 1

1+ρ−αmin(ρ,1)

I ρ = N
C

: the communication/computation ratio

51 / 69

Scheduling Algorithm

I Prioritize transfers that speed up the critical path in the DAG, by reducing blocking
on computation caused by parameter transfers.

I TIC: Timing-Independent Communication scheduling

• Prioritize those transfers that reduces blocking on network transfers.

I TAC: Timing-Aware Communication scheduling

• Prioritize those transfers that reduces the blocking of computation.

52 / 69

Scheduling Algorithm

I Prioritize transfers that speed up the critical path in the DAG, by reducing blocking
on computation caused by parameter transfers.

I TIC: Timing-Independent Communication scheduling

• Prioritize those transfers that reduces blocking on network transfers.

I TAC: Timing-Aware Communication scheduling

• Prioritize those transfers that reduces the blocking of computation.

52 / 69

Scheduling Algorithm

I Prioritize transfers that speed up the critical path in the DAG, by reducing blocking
on computation caused by parameter transfers.

I TIC: Timing-Independent Communication scheduling

• Prioritize those transfers that reduces blocking on network transfers.

I TAC: Timing-Aware Communication scheduling

• Prioritize those transfers that reduces the blocking of computation.

52 / 69

Scheduling Algorithm

I Prioritize transfers that speed up the critical path in the DAG, by reducing blocking
on computation caused by parameter transfers.

I TIC: Timing-Independent Communication scheduling
• Prioritize those transfers that reduces blocking on network transfers.

I TAC: Timing-Aware Communication scheduling

• Prioritize those transfers that reduces the blocking of computation.

52 / 69

Scheduling Algorithm

I Prioritize transfers that speed up the critical path in the DAG, by reducing blocking
on computation caused by parameter transfers.

I TIC: Timing-Independent Communication scheduling
• Prioritize those transfers that reduces blocking on network transfers.

I TAC: Timing-Aware Communication scheduling
• Prioritize those transfers that reduces the blocking of computation.

52 / 69

TIC

I Prioritize those transfers that reduces blocking on network transfers.

I Prioritize based only on vertex dependencies in the DAG.

I Higher priorities are given to transfers that are least blocking on computation.

I Ignore the ops time, and use the number of communication ops instead.

I E.g., op1.M = Time(recv1) and op2.M = Time(recv1) + Time(recv2).

53 / 69

TIC

I Prioritize those transfers that reduces blocking on network transfers.

I Prioritize based only on vertex dependencies in the DAG.

I Higher priorities are given to transfers that are least blocking on computation.

I Ignore the ops time, and use the number of communication ops instead.

I E.g., op1.M = Time(recv1) and op2.M = Time(recv1) + Time(recv2).

53 / 69

TIC

I Prioritize those transfers that reduces blocking on network transfers.

I Prioritize based only on vertex dependencies in the DAG.

I Higher priorities are given to transfers that are least blocking on computation.

I Ignore the ops time, and use the number of communication ops instead.

I E.g., op1.M = Time(recv1) and op2.M = Time(recv1) + Time(recv2).

53 / 69

TIC

I Prioritize those transfers that reduces blocking on network transfers.

I Prioritize based only on vertex dependencies in the DAG.

I Higher priorities are given to transfers that are least blocking on computation.

I Ignore the ops time, and use the number of communication ops instead.

I E.g., op1.M = Time(recv1) and op2.M = Time(recv1) + Time(recv2).

53 / 69

TIC

I Prioritize those transfers that reduces blocking on network transfers.

I Prioritize based only on vertex dependencies in the DAG.

I Higher priorities are given to transfers that are least blocking on computation.

I Ignore the ops time, and use the number of communication ops instead.

I E.g., op1.M = Time(recv1) and op2.M = Time(recv1) + Time(recv2).

53 / 69

TAC

I Prioritize those transfers that reduces the blocking of computation.

I Prioritize transfers that maximize α by using information on:

1. Vertex dependencies among ops specified by the computational DAG.

2. Execution time of each op estimated with time oracle.

I To achieve this goal, the algorithm focuses on two cases:

1. Any communication and computation overlapping?
2. If no, choose one which eliminates the computation block sooner.

54 / 69

TAC

I Prioritize those transfers that reduces the blocking of computation.

I Prioritize transfers that maximize α by using information on:

1. Vertex dependencies among ops specified by the computational DAG.

2. Execution time of each op estimated with time oracle.

I To achieve this goal, the algorithm focuses on two cases:

1. Any communication and computation overlapping?
2. If no, choose one which eliminates the computation block sooner.

54 / 69

TAC

I Prioritize those transfers that reduces the blocking of computation.

I Prioritize transfers that maximize α by using information on:

1. Vertex dependencies among ops specified by the computational DAG.

2. Execution time of each op estimated with time oracle.

I To achieve this goal, the algorithm focuses on two cases:

1. Any communication and computation overlapping?
2. If no, choose one which eliminates the computation block sooner.

54 / 69

TAC

I Prioritize those transfers that reduces the blocking of computation.

I Prioritize transfers that maximize α by using information on:

1. Vertex dependencies among ops specified by the computational DAG.

2. Execution time of each op estimated with time oracle.

I To achieve this goal, the algorithm focuses on two cases:

1. Any communication and computation overlapping?
2. If no, choose one which eliminates the computation block sooner.

54 / 69

TAC

I Prioritize those transfers that reduces the blocking of computation.

I Prioritize transfers that maximize α by using information on:

1. Vertex dependencies among ops specified by the computational DAG.

2. Execution time of each op estimated with time oracle.

I To achieve this goal, the algorithm focuses on two cases:

1. Any communication and computation overlapping?
2. If no, choose one which eliminates the computation block sooner.

54 / 69

CARAMEL: Accelerating Decentralized
Distributed Deep Learning

with Computation Scheduling

55 / 69

CARAMEL

I Decentralized aggregation (no PS)

I Improve efficiency of decentralized DNN training

I In terms of iteration time and GPU utilization

I CARAMEL achieves this goal through:

1. Computation scheduling that expands the feasible window of transfer for each parameter
(transfer boundaries)

2. Network optimizations that smoothen the load

56 / 69

CARAMEL

I Decentralized aggregation (no PS)

I Improve efficiency of decentralized DNN training

I In terms of iteration time and GPU utilization

I CARAMEL achieves this goal through:

1. Computation scheduling that expands the feasible window of transfer for each parameter
(transfer boundaries)

2. Network optimizations that smoothen the load

56 / 69

CARAMEL

I Decentralized aggregation (no PS)

I Improve efficiency of decentralized DNN training

I In terms of iteration time and GPU utilization

I CARAMEL achieves this goal through:

1. Computation scheduling that expands the feasible window of transfer for each parameter
(transfer boundaries)

2. Network optimizations that smoothen the load

56 / 69

CARAMEL

I Decentralized aggregation (no PS)

I Improve efficiency of decentralized DNN training

I In terms of iteration time and GPU utilization

I CARAMEL achieves this goal through:

1. Computation scheduling that expands the feasible window of transfer for each parameter
(transfer boundaries)

2. Network optimizations that smoothen the load

56 / 69

CARAMEL

I Decentralized aggregation (no PS)

I Improve efficiency of decentralized DNN training

I In terms of iteration time and GPU utilization

I CARAMEL achieves this goal through:

1. Computation scheduling that expands the feasible window of transfer for each parameter
(transfer boundaries)

2. Network optimizations that smoothen the load

56 / 69

CARAMEL

I Decentralized aggregation (no PS)

I Improve efficiency of decentralized DNN training

I In terms of iteration time and GPU utilization

I CARAMEL achieves this goal through:

1. Computation scheduling that expands the feasible window of transfer for each parameter
(transfer boundaries)

2. Network optimizations that smoothen the load

56 / 69

Computation Scheduling (1/2)

I In decentralized aggregation, all workers should have the parameter available for
aggregation before the transfer can be initiated.

I There are multiple feasible orders for executing operations in a DAG.

I The parameters may become available at different workers in varying orders.

I The transfer boundaries of a parameter represent the window when a parameter can
be aggregated without blocking computation.

I The start boundary is determined by the completion of the computation operation
that updates the parameter.

I The end boundary is the computation operation that reads the parameter.

57 / 69

Computation Scheduling (1/2)

I In decentralized aggregation, all workers should have the parameter available for
aggregation before the transfer can be initiated.

I There are multiple feasible orders for executing operations in a DAG.

I The parameters may become available at different workers in varying orders.

I The transfer boundaries of a parameter represent the window when a parameter can
be aggregated without blocking computation.

I The start boundary is determined by the completion of the computation operation
that updates the parameter.

I The end boundary is the computation operation that reads the parameter.

57 / 69

Computation Scheduling (1/2)

I In decentralized aggregation, all workers should have the parameter available for
aggregation before the transfer can be initiated.

I There are multiple feasible orders for executing operations in a DAG.

I The parameters may become available at different workers in varying orders.

I The transfer boundaries of a parameter represent the window when a parameter can
be aggregated without blocking computation.

I The start boundary is determined by the completion of the computation operation
that updates the parameter.

I The end boundary is the computation operation that reads the parameter.

57 / 69

Computation Scheduling (1/2)

I In decentralized aggregation, all workers should have the parameter available for
aggregation before the transfer can be initiated.

I There are multiple feasible orders for executing operations in a DAG.

I The parameters may become available at different workers in varying orders.

I The transfer boundaries of a parameter represent the window when a parameter can
be aggregated without blocking computation.

I The start boundary is determined by the completion of the computation operation
that updates the parameter.

I The end boundary is the computation operation that reads the parameter.

57 / 69

Computation Scheduling (1/2)

I In decentralized aggregation, all workers should have the parameter available for
aggregation before the transfer can be initiated.

I There are multiple feasible orders for executing operations in a DAG.

I The parameters may become available at different workers in varying orders.

I The transfer boundaries of a parameter represent the window when a parameter can
be aggregated without blocking computation.

I The start boundary is determined by the completion of the computation operation
that updates the parameter.

I The end boundary is the computation operation that reads the parameter.

57 / 69

Computation Scheduling (1/2)

I In decentralized aggregation, all workers should have the parameter available for
aggregation before the transfer can be initiated.

I There are multiple feasible orders for executing operations in a DAG.

I The parameters may become available at different workers in varying orders.

I The transfer boundaries of a parameter represent the window when a parameter can
be aggregated without blocking computation.

I The start boundary is determined by the completion of the computation operation
that updates the parameter.

I The end boundary is the computation operation that reads the parameter.

57 / 69

Computation Scheduling (2/2)

I CARAMEL expands these boundaries through scheduling optimizations of the com-
putation DAG, where it

1. Moves the start boundaries earlier.
2. Pushes the end boundary by postponing the execution of some computation operations

to the forward pass of next iteration.

[Hashemi et al., CARAMEL: Accelerating Decentralized Distributed Deep Learning with Model-Aware Scheduling, 2020]

58 / 69

Computation Scheduling (2/2)

I CARAMEL expands these boundaries through scheduling optimizations of the com-
putation DAG, where it

1. Moves the start boundaries earlier.

2. Pushes the end boundary by postponing the execution of some computation operations
to the forward pass of next iteration.

[Hashemi et al., CARAMEL: Accelerating Decentralized Distributed Deep Learning with Model-Aware Scheduling, 2020]

58 / 69

Computation Scheduling (2/2)

I CARAMEL expands these boundaries through scheduling optimizations of the com-
putation DAG, where it

1. Moves the start boundaries earlier.
2. Pushes the end boundary by postponing the execution of some computation operations

to the forward pass of next iteration.

[Hashemi et al., CARAMEL: Accelerating Decentralized Distributed Deep Learning with Model-Aware Scheduling, 2020]

58 / 69

Network Optimization

I Optimizations for smoothening the network load include:

1. Batching of small parameters to reduce the network overhead.

2. Adaptive splitting and pipelining of parameters to accelerate aggregation of large data.

59 / 69

Network Optimization

I Optimizations for smoothening the network load include:

1. Batching of small parameters to reduce the network overhead.

2. Adaptive splitting and pipelining of parameters to accelerate aggregation of large data.

59 / 69

Network Optimization

I Optimizations for smoothening the network load include:

1. Batching of small parameters to reduce the network overhead.

2. Adaptive splitting and pipelining of parameters to accelerate aggregation of large data.

59 / 69

Defining the Environment

I T: the actual iteration time

I N: the communication time

I C: the computation time

I Overlap coefficient: α = N+C−T
min(N,C)

I GPU utilization: U = C
T

= C
N+C−αmin(N,C) = 1

1+ρ−αmin(ρ,1)

I ρ = N
C

: the communication/computation ratio

60 / 69

Defining the Environment

I T: the actual iteration time

I N: the communication time

I C: the computation time

I Overlap coefficient: α = N+C−T
min(N,C)

I GPU utilization: U = C
T

= C
N+C−αmin(N,C) = 1

1+ρ−αmin(ρ,1)

I ρ = N
C

: the communication/computation ratio

60 / 69

Defining the Environment

I T: the actual iteration time

I N: the communication time

I C: the computation time

I Overlap coefficient: α = N+C−T
min(N,C)

I GPU utilization: U = C
T

= C
N+C−αmin(N,C) = 1

1+ρ−αmin(ρ,1)

I ρ = N
C

: the communication/computation ratio

60 / 69

CARAMEL Algorithm

I Dataflow DAG Optimizer

I Network Transfer Scheduler

I Parameter Batcher

I Adaptive Depth Enforcer

61 / 69

Dataflow DAG Optimizer

I Stage 1: Determining the best order.

• Increasing the overlap coefficient α by prioritizing the computations that activates the
communication operations as early as possible.

I Stage 2: Enforcing the best order.

• Iteratively activate parameters in the best order chosen in the previous stage.
• Ensureing that at each given time, only ops needed for the target parameter update can

be executed.

62 / 69

Dataflow DAG Optimizer

I Stage 1: Determining the best order.

• Increasing the overlap coefficient α by prioritizing the computations that activates the
communication operations as early as possible.

I Stage 2: Enforcing the best order.

• Iteratively activate parameters in the best order chosen in the previous stage.
• Ensureing that at each given time, only ops needed for the target parameter update can

be executed.

62 / 69

Dataflow DAG Optimizer

I Stage 1: Determining the best order.
• Increasing the overlap coefficient α by prioritizing the computations that activates the

communication operations as early as possible.

I Stage 2: Enforcing the best order.

• Iteratively activate parameters in the best order chosen in the previous stage.
• Ensureing that at each given time, only ops needed for the target parameter update can

be executed.

62 / 69

Dataflow DAG Optimizer

I Stage 1: Determining the best order.
• Increasing the overlap coefficient α by prioritizing the computations that activates the

communication operations as early as possible.

I Stage 2: Enforcing the best order.
• Iteratively activate parameters in the best order chosen in the previous stage.

• Ensureing that at each given time, only ops needed for the target parameter update can
be executed.

62 / 69

Dataflow DAG Optimizer

I Stage 1: Determining the best order.
• Increasing the overlap coefficient α by prioritizing the computations that activates the

communication operations as early as possible.

I Stage 2: Enforcing the best order.
• Iteratively activate parameters in the best order chosen in the previous stage.
• Ensureing that at each given time, only ops needed for the target parameter update can

be executed.

62 / 69

Network Transfer Scheduler

I Increasing the overlap coefficient α by scheduling parameter transfers efficiently.

I Transfers are scheduled in both backward pass and forward pass.

[Hashemi et al., CARAMEL: Accelerating Decentralized Distributed Deep Learning with Model-Aware Scheduling, 2020]

63 / 69

Parameter Batcher

I Small parameters incur large overhead.

I Combining small parameters in to groups.

I Parameters larger than a certain threshold are transferred without batching.

64 / 69

Parameter Batcher

I Small parameters incur large overhead.

I Combining small parameters in to groups.

I Parameters larger than a certain threshold are transferred without batching.

64 / 69

Parameter Batcher

I Small parameters incur large overhead.

I Combining small parameters in to groups.

I Parameters larger than a certain threshold are transferred without batching.

64 / 69

Adaptive Depth Enforcer

I Two stages in decentralized algorithms: transferring and aggregating data across
nodes.

• In each step, data is transferred on the network, and is sent to application to be reduced,
before the result is sent again over the network.

I This process reduces the network utilization since the network is not utilized during
the reduction at the application layer.

I Chunk (break) the data in to a few pieces, and transfer each chunk independently in
parallel.

I While one chunk is being reduced on the CPU, another chunk can be sent over the
network: this enables pipelining of network transfer and application-level processing
across various chunks.

65 / 69

Adaptive Depth Enforcer

I Two stages in decentralized algorithms: transferring and aggregating data across
nodes.

• In each step, data is transferred on the network, and is sent to application to be reduced,
before the result is sent again over the network.

I This process reduces the network utilization since the network is not utilized during
the reduction at the application layer.

I Chunk (break) the data in to a few pieces, and transfer each chunk independently in
parallel.

I While one chunk is being reduced on the CPU, another chunk can be sent over the
network: this enables pipelining of network transfer and application-level processing
across various chunks.

65 / 69

Adaptive Depth Enforcer

I Two stages in decentralized algorithms: transferring and aggregating data across
nodes.

• In each step, data is transferred on the network, and is sent to application to be reduced,
before the result is sent again over the network.

I This process reduces the network utilization since the network is not utilized during
the reduction at the application layer.

I Chunk (break) the data in to a few pieces, and transfer each chunk independently in
parallel.

I While one chunk is being reduced on the CPU, another chunk can be sent over the
network: this enables pipelining of network transfer and application-level processing
across various chunks.

65 / 69

Adaptive Depth Enforcer

I Two stages in decentralized algorithms: transferring and aggregating data across
nodes.

• In each step, data is transferred on the network, and is sent to application to be reduced,
before the result is sent again over the network.

I This process reduces the network utilization since the network is not utilized during
the reduction at the application layer.

I Chunk (break) the data in to a few pieces, and transfer each chunk independently in
parallel.

I While one chunk is being reduced on the CPU, another chunk can be sent over the
network: this enables pipelining of network transfer and application-level processing
across various chunks.

65 / 69

Adaptive Depth Enforcer

I Two stages in decentralized algorithms: transferring and aggregating data across
nodes.

• In each step, data is transferred on the network, and is sent to application to be reduced,
before the result is sent again over the network.

I This process reduces the network utilization since the network is not utilized during
the reduction at the application layer.

I Chunk (break) the data in to a few pieces, and transfer each chunk independently in
parallel.

I While one chunk is being reduced on the CPU, another chunk can be sent over the
network: this enables pipelining of network transfer and application-level processing
across various chunks.

65 / 69

Summary

66 / 69

Summary

I Data-parallel

I The aggregation algorithm

I Communication synchronization

I Communication compression

I Parallelism of computations and communications

I TicTac

I Caramel

67 / 69

Reference

I Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive
Survey, 2020

I Hashemi et al., TicTac: Accelerating Distributed Deep Learning with Communication
Scheduling, 2019

I Hashemi et al., CARAMEL: Accelerating Decentralized Distributed Deep Learning
with Model-Aware Scheduling, 2020

68 / 69

Questions?

69 / 69

