Module 1 Discussion

Jose Bonet Yusen Wang Lifei Tang

Measuring the Effects of Data Parallelism on Neural Network Training

Introduction

- **Data parallelism**: Distributing training examples across multiple processors to compute gradient updates
- Parallelism dichotomy:
 - + Speedup
 - - Out-of-sample error
- **Costs** and **benefits** of data parallelism

Scope of the study

- 1. What is the relationship between batch size and number of training steps to reach a goal out-of-sample error?
- 2. What governs this relationship?
- 3. Do large batch sizes incur a cost in out-of-sample error?

Convergence bounds (1)

• Upper bound SGD performance applied to L-Lipschitz convex loss:

$$J(\theta_T) - J^{\star} \leq O\left(\sqrt{\frac{L^2}{T}}\right)$$

Achievable Time complexity

• No benefit: Increasing batch size does not change the number of steps to convergence

Convergence bounds (2)

• SGD bound when loss is convex and objective H-smooth:

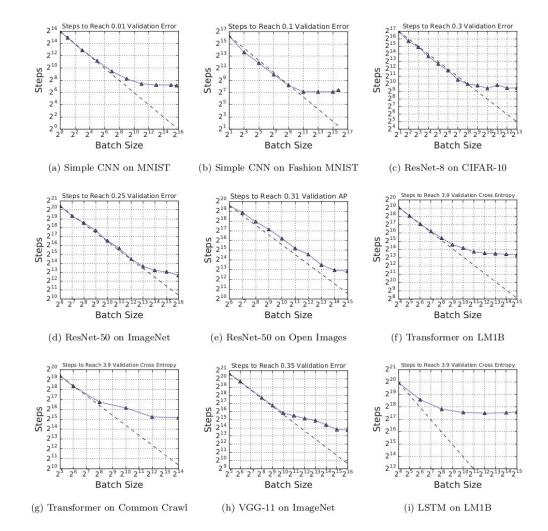
$$J(\theta_T) - J^{\star} \leq O\left(\frac{H}{T^2} + \sqrt{\frac{L^2}{Tb}}\right)$$

Achievable Time complexity

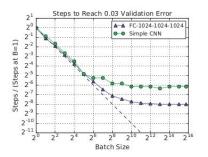
• A b-fold benefit: Increasing b decreases T to a given objective value by the same factor

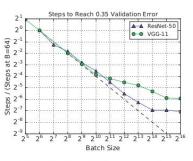
Convergence & study plots

- Perfect scaling: b-fold benefit
- Diminishing returns
- Maximal data parallelism: no benefit



Steps to result depends on batch size in a similar way across problems





(b) ResNet-50 vs VGG-11 on ImageNet

2¹

20

2-1

2-2

2-3

2-4

2-5

2-6

2⁻⁷ 2⁻⁸ 2⁻⁹

2⁻¹⁰ 2⁻¹¹

2¹

20

B=16)

të 2

Steps / (Steps a -2 -2 -2 -2 -2 -2 -2 -2

2-8

2

24 25 26 27 28

2⁰ 2² 2'

Steps / (Steps at B=2)

Steps to Reach 0.03 Validation Error

* * FC-1024

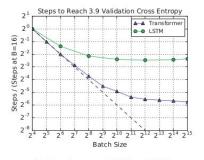
FC-128-128-128

▼ ▼ FC-256-256-256

• FC-512-512-512

A FC-1024-1024-1024

FC-2048-2048-2048



(c) Transformer vs LSTM on LM1B

(d) Fully Connected sizes on MNIST

2⁸ 2¹⁰ 2¹² 2¹⁴ 2¹⁶

Batch Size

Steps to Reach 4.2 Validation Cross Entropy

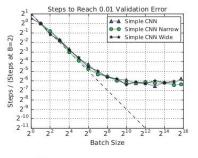
• • Wide

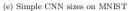
A Base

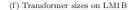
- Shallow

Narrow and Shallow

29 210 211 212 213 214 215



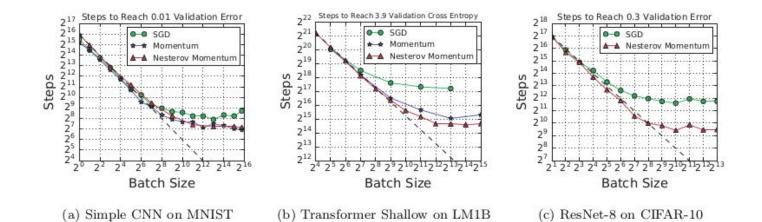




Batch Size

Not all models scale equally with batch size

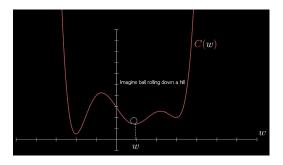
Momentum extends perfect scaling to larger batch sizes

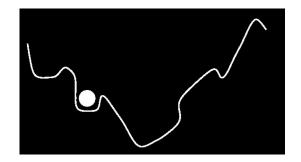


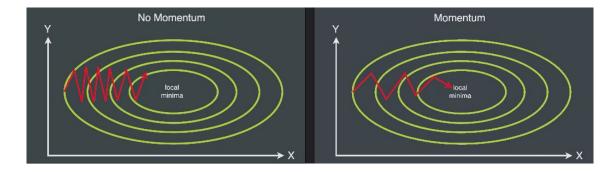
Comment on momentum

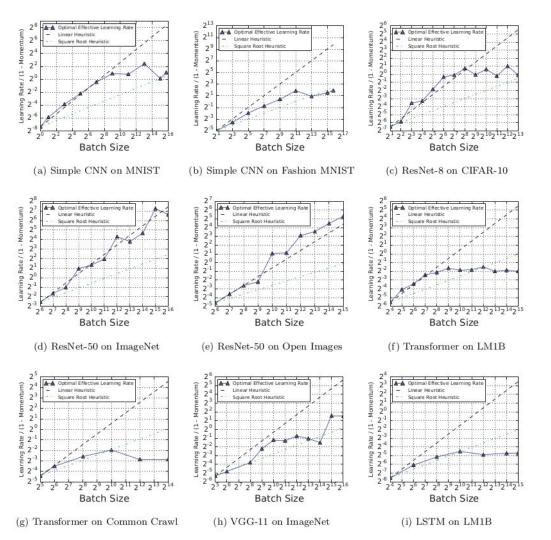
https://mlfromscratch.com/optimizers-explained/#/

https://distill.pub/2017/momentum/



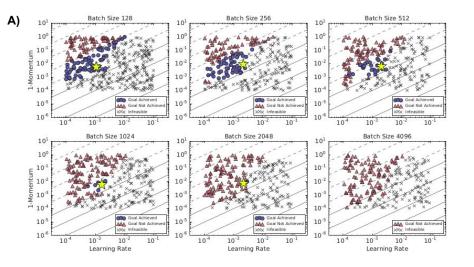






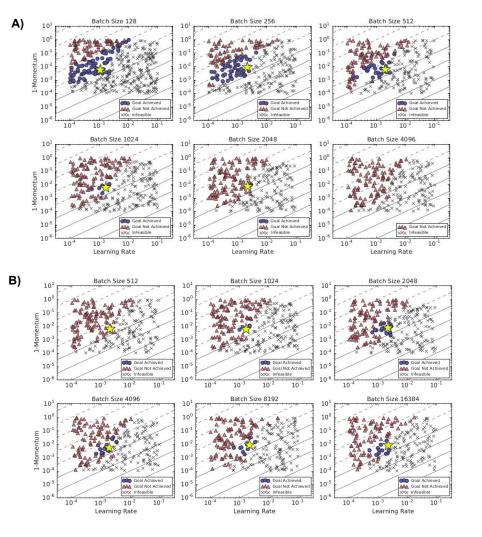
Best learning rate and momentum vary with batch size (1)

However, it did not always follow a particular scaling



Region in metaparameter space corresponding to rapid training in terms of epochs becomes smaller

Best learning rate and momentum vary with batch size (2)

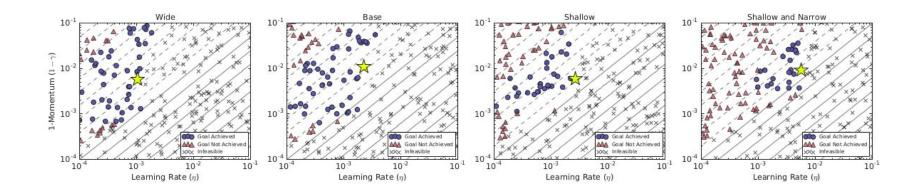


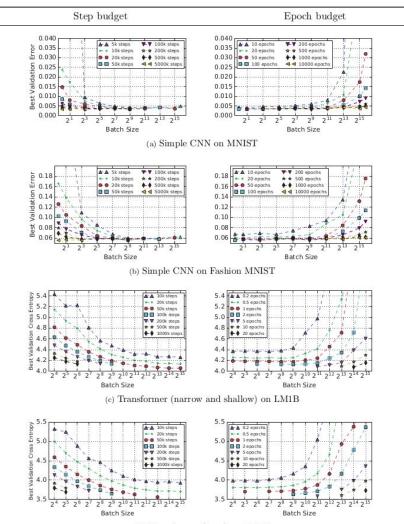
Region in metaparameter space corresponding to rapid training in terms of epochs becomes smaller

Best learning rate and momentum vary with batch size (2)

Region in metaparameter space corresponding to rapid training in terms of step-count grows larger

Best learning rate and momentum vary with batch size (3)





Solution quality depends on compute budget more than batch size

(d) Transformer (base) on LM1B

Main contributions

- 1. Shared relationship between batch size and number of training steps to reach out-of-sample error.
- 2. Maximum useful batch size varies significantly between workloads and depends on model properties, training algorithm and data set.
- 3. Optimal values of training metaparameters do not consistently follow any simple relationships with batch size

Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour

Outline

1. Linear scaling rule

2. Different warmup methods

3. Experiment results and discussion

Large Minibatch SGD

Loss function:

$$L(w) = \frac{1}{|X|} \sum_{x \in X} l(x, w).$$

Minibatch Stochastic Gradient Descent:

$$w_{t+1} = w_t - \eta \frac{1}{n} \sum_{x \in \mathcal{B}} \nabla l(x, w_t).$$

Learning Rates for Large Minibatches

Goal:

Use large minibatches in place of small minibatches while

Maintaining training and generalization accuracy

Linear Scaling Rule:

When the minibatch size is multiplied by k, multiply the learning

rate by k

Interpretation of Linear Scaling Rule

After *k* iterations of SGD:

$$w_{t+k} = w_t - \eta rac{1}{n} \sum_{j < k} \sum_{x \in \mathcal{B}_j}
abla l(x, w_{t+j})$$

Take a single step of large minibatch:

$$\hat{w}_{t+1} = w_t - \hat{\eta} \frac{1}{kn} \sum_{j < k} \sum_{x \in \mathcal{B}_j} \nabla l(x, w_t).$$

Strong assumption:

If $\nabla l(x, w_t) \approx \nabla l(x, w_{t+j})$ is true,

then setting $\hat{\eta} = k\eta$ would yield $\hat{w}_{t+1} pprox w_{t+k}$

"Strong" Assumption

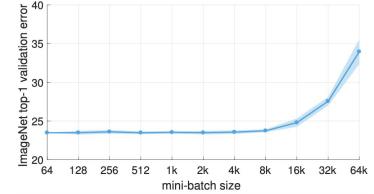
The approximation **might** be valid in large-scale, real-world data.

Cases when the condition will not hold:

1. Early stages of training process:

The network is changing rapidly

Minibatch size can not be scaled indefinitely:
 Results are stable for a certain range of sizes



Warmup

Constant warmup vs Gradual warmup

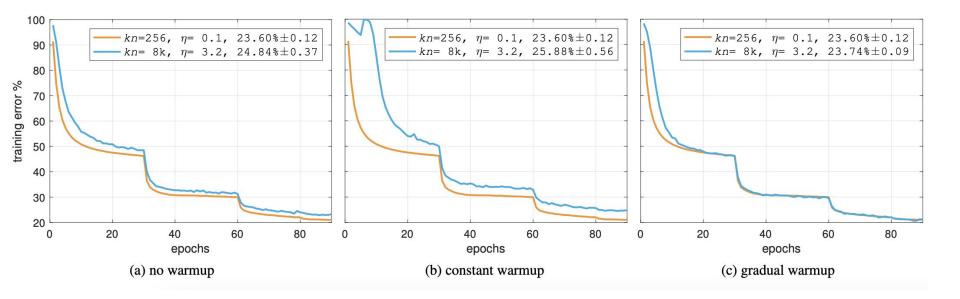
Constant:

Low constant learning rate for first few epochs of training

Gradual:

Increase learning rate by a constant amount at each iteration

Different Warmup Methods



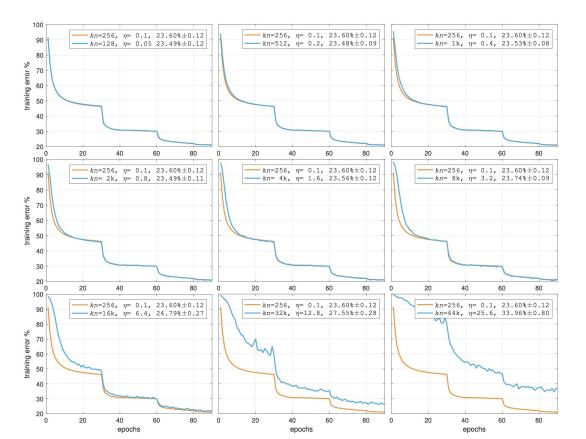
Training curves for different warmup methods

Different Warmup Methods

	$\mid k$	n	kn	η	top-1 error (%)
baseline (single server)	8	32	256	0.1	23.60 ± 0.12
no warmup, Figure 2a	256	32	8k	3.2	24.84 ±0.37
constant warmup, Figure 2b					
gradual warmup, Figure 2c	256	32	8k	3.2	23.74 ±0.09

Validation error for different warmup methods

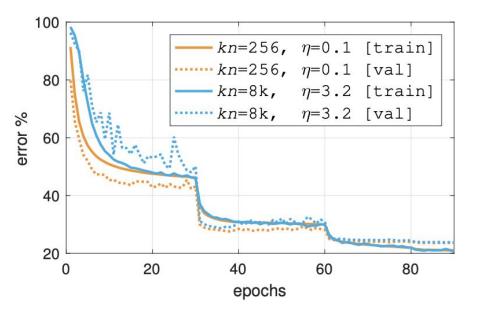
Training error vs Minibatch Size



The stability break down when minibatch size exceeds 8k

(1k = 1024)

Training and Validation Curves



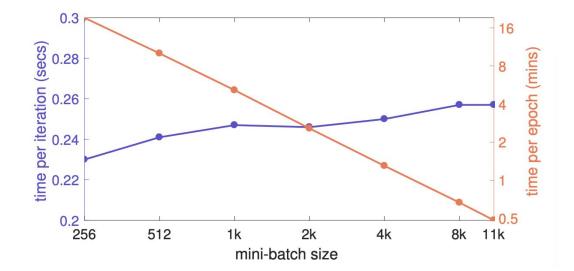
Training and validation curves for

Large minibatch SGD with gradual warmup

VS

Small minibatch SGD

Distributed synchronous SGD Timing



Time per iteration is relatively flat

Time per epoch decreases from over 16 minutes to 30 seconds

Main Contributions

1. Proposed the linear scaling rule for learning rate.

2. Proposed the gradual warmup method for early stages of training process, performance is compared with no warmup and constant warmup.

3. Dramatically decrease the training time of ImageNet while maintaining training and validation accuracy

CROSSBOW: Scaling Deep Learning with Small Batch Sizes on Multi-GPU Servers

Interesting Quotes

"In practice, batch sizes of 64,000 are now not uncommon"

- CROSSBOW, 2018

"Training with large mini-batches is bad for your health. More importantly, it's bad for your test error. Friends don't let friends use mini-batches larger than 32."

- Yann LeCun (@ylecun), April 2018

Motivation:

- To scale deep learning training on Multiple GPUs
- Large batch size, better hardware efficiency, but poorer statistical efficiency.

CROSSBOW: a single-server multi-GPU system for training deep learning models that enables users to freely choose their preferred batch size.

Research questions:

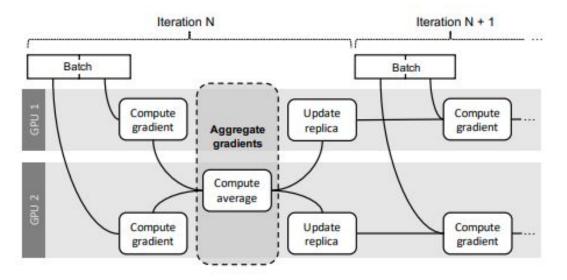
- How to synchronize model replicas without adversely affecting statistical efficiency
- How to ensure high hardware (GPU) efficiency?

Methods:

- SMA: Synchronous Model Averaging
- Training multi learner per GPU
 - Auto-tuning the number of learners
 - Concurrent task engine

SMA vs SSGD:

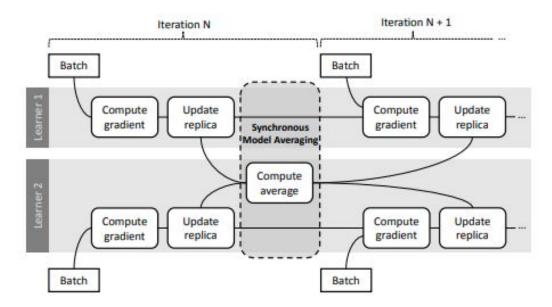
In Synchronous SGD (S-SGD), learner is dependent



(CROSSBOW: Scaling Deep Learning with Small Batch Sizes on Multi-GPU Servers)

SMA vs SSGD:

in SMA, learner is independent



SMA Replica updates:

learner : $j \in 1, ..., k$, B_j : *batch for j th learner* :

;

$$g_j \leftarrow \gamma \nabla \ell_{B_j}(\mathsf{w}_j) ;$$

 $c_j \leftarrow \alpha(\mathsf{w}_j - \mathsf{z}) ;$
 $\mathsf{w}_j \leftarrow \mathsf{w}_j - g_j - c_j$

// Gradient for replica j
// Correction for replica j
// Update replica j

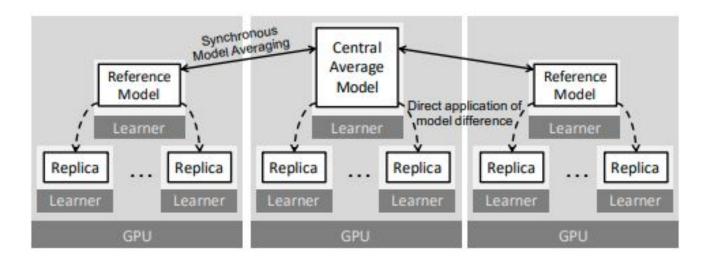
Note : $\alpha \approx 1/k$, *z* is the average model

Model Aggregation:

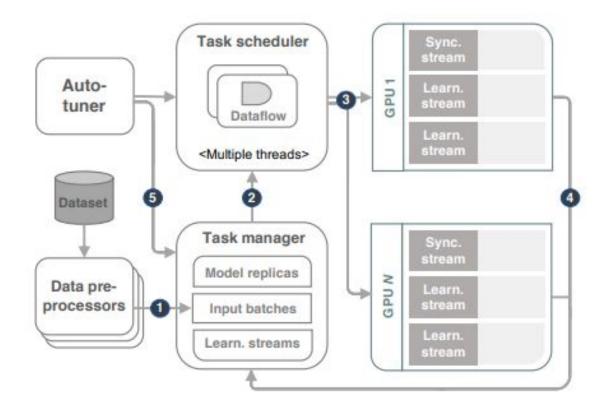
learner : $j \in 1, ..., k$, z is the average model

// Update central average model $z' \leftarrow z$; $z \leftarrow z + \sum_{j=1}^{k} c_j + \mu(z - z_{prev})$; $z_{prev} \leftarrow z'$;

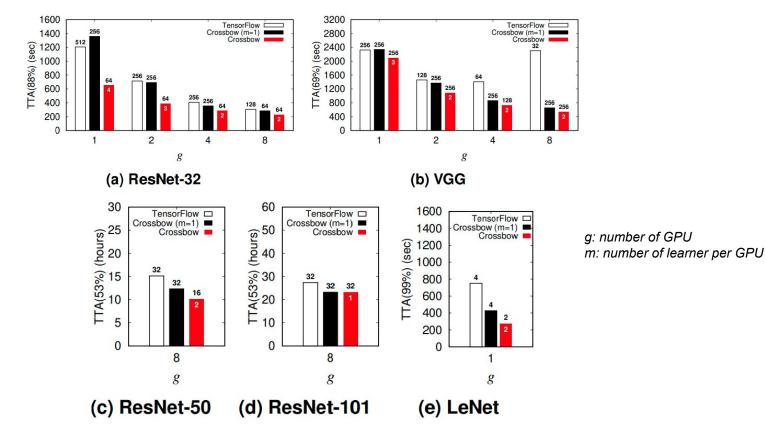
Synchronizing multiple learners per GPU



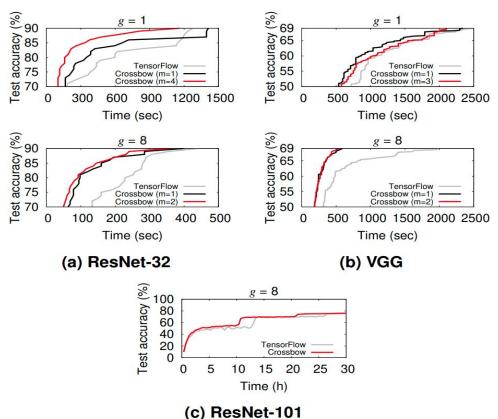
Architecture to maximize HW efficiency



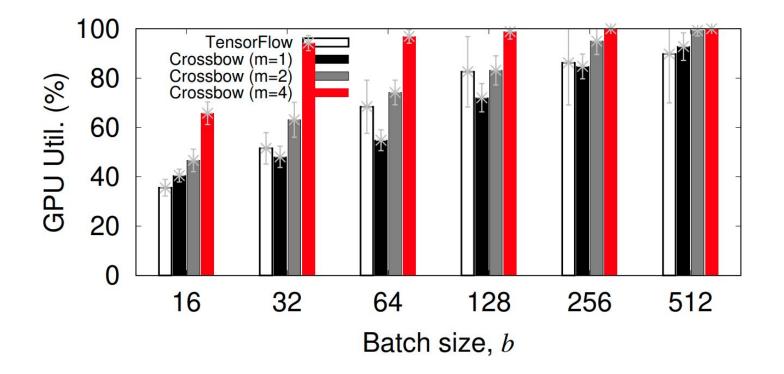
Result: Time to Accuracy



Result: Convergence Over Time



Result: GPU utilisation for various batch sizes



Don't Use Large Mini-Batches, Use Local SGD

What is local SGD?

• Mini-batch SGD

$$\boldsymbol{w}_{(t+1)} := \boldsymbol{w}_{(t)} - \gamma_{(t)} \left[\frac{1}{K} \sum_{k=1}^{K} \frac{1}{B} \sum_{i \in \mathcal{I}_{(t)}^{k}} \nabla f_{i} \left(\boldsymbol{w}_{(t)} \right) \right]$$

 Local SGD: each worker k evolves a local model by performing H SGD updates with mini-batch size B_{loc}, before communication among the workers.

$$\boldsymbol{w}_{(t)+h+1}^k := \boldsymbol{w}_{(t)+h}^k - \gamma_{(t)} \Big[\frac{1}{B_{\text{loc}}} \sum_{i \in \mathcal{I}_{(t)+h}^k} \nabla f_i \big(\boldsymbol{w}_{(t)+h}^k \big) \Big]$$

Data parallelisation dichotomy

- **Scenario 1**. The communication restricted setting (Communication efficiency)
- Scenario 2. The regime of poor generalization of large-batch SGD (out-of-sample error)

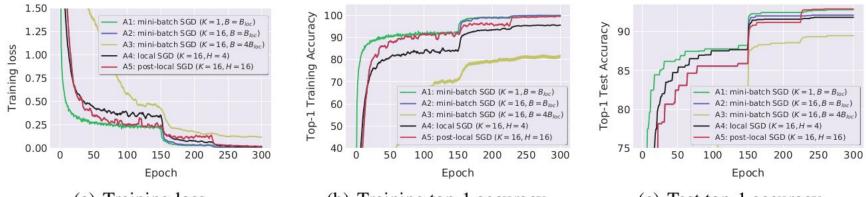
Post-local SGD

• Local SGD is **only started** in the second phase of training **after** *t*' **initial steps** (1st learning rate decay) with standard mini-batch SGD.

$$H_{(t)} = \begin{cases} 1, & \text{if } t \leq t', \\ H, & \text{if } t > t'. \end{cases}$$

(mini-batch SGD) (local SGD)

Main results



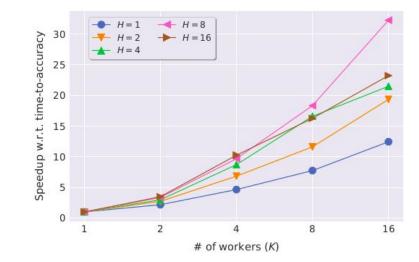
(a) Training loss.

(b) Training top-1 accuracy.

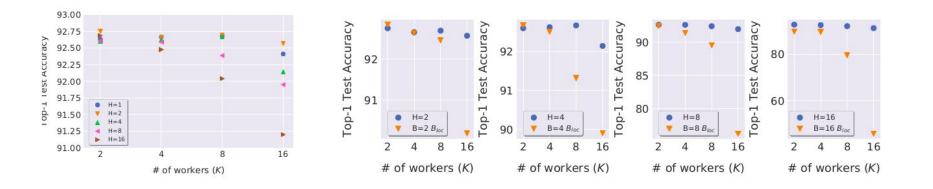
(c) Test top-1 accuracy.

	accuracy on training set			accuracy on test set top-1 acc.		system performance		
Algorithm	loss value top-1 acc.		parallelism			n communication		
A1: small mini-batch SGD ($K = 1, B = B_{loc}$) A2: large mini-batch SGD ($K = 16, B = B_{loc}$) A3: huge mini-batch SGD ($K = 16, B = 4B_{loc}$)	$\begin{array}{c} 0.01 \\ 0.01 \\ 0.10 \end{array}$	100% 100% 81%	excellent excellent poor		excellent good poor	$ \begin{array}{c} \times 1 \\ \times 16 \\ \times 16 \end{array} $	- ÷1 ÷4	poor ok good
A4: local SGD $(K = 16, H = 4)$	0.01	95%	ok	92%	good	$ \times 16$	$\div 4$	good
A5: post-local SGD ($K = 16, H = 16$)	0.01	99%	excellent	93%	excellent	$\times 16$	$\div1$ (phase 1), $\div16$ (phase 2)	good

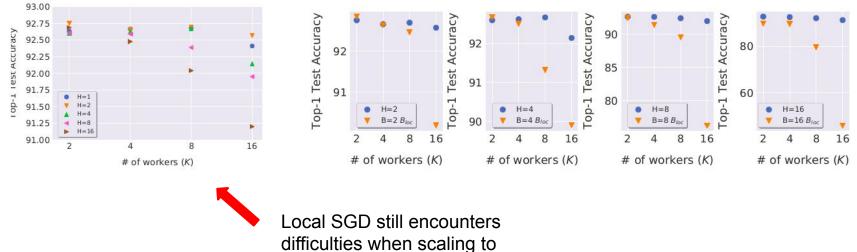
Superior scalability of Local SGD over mini-batch SGD



Local SGD outperforms mini-batch SGD at the same effective batch size and communication ratio



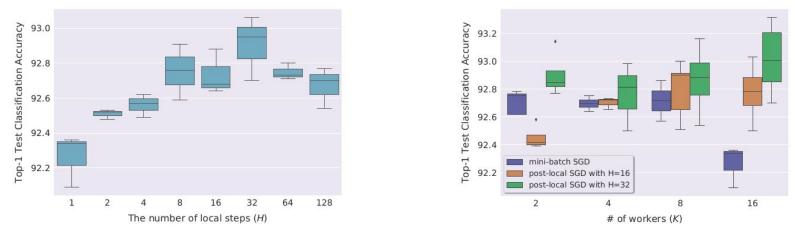
Local SGD outperforms mini-batch SGD at the same effective batch size and communication ratio



very large mini-batches

Post-local SGD closes the generalization gap of large-batch training

Constant mini-batch size of 2048 or 4096



	CIFAR-10				CIFAR-100				
	Small batch baseline *	h Large batch Post-local SGI baseline * (H=16)		Post-local SGD (H=32)	Small batch baseline *	Large batch baseline *	Post-local SGD (H=16)	Post-local SGD (H=32)	
	$K\!=\!2,B\!=\!128$	K = 16, B = 128	$K = 16, B_{\text{loc}} = 128$	$K\!=\!16,B_{\rm loc}\!=\!128$	K = 2, B = 128	K = 16, B = 128	$K\!=\!16,B_{\rm loc}\!=\!128$	$K\!=\!16,B_{\rm loc}\!=\!128$	
ResNet-20	$92.63 \hspace{0.1 cm} \pm 0.26$	$92.48 \hspace{0.1 cm} \pm 0.17$	$92.80 \pm 0.16 $	93.02 ± 0.24	$68.84 \hspace{0.2cm} \pm 0.06$	$68.17 \hspace{0.1in} \pm 0.18$	$69.24 \pm 0.26 $	69.38 ±0.20	
DenseNet-40-12	$94.41 \pm 0.14 $	$94.36 \hspace{0.1 cm} \pm 0.20 \hspace{0.1 cm}$	$94.43 \hspace{0.1cm} \pm 0.12$	94.58 ± 0.11		$74.08 \hspace{0.1in} \pm 0.46$	$74.45 \hspace{0.2cm} \pm \hspace{-0.2cm} 0.30$	75.03 ± 0.05	
WideResNet-28-10	$95.89 \hspace{0.1in} \pm 0.10$	$95.43 \hspace{0.1in} \pm 0.37$	$\textbf{95.94} \hspace{0.1in} \pm 0.06$	$95.76 \hspace{0.2cm} \pm 0.25$		$79.31 \hspace{.1in} \pm 0.23$	$80.28 \hspace{0.1cm} \pm 0.13$	80.65 ± 0.16	

Main contributions

- Local SGD can serve as a communication-efficient alternative to mini-batch SGD
- Post-local SGD provides a state-of-the-art remedy for the generalization issue of large-batch trainings