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Linear Regression
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Linear Regression (1/2)

I Given the dataset of m houses.

Living area No. of bedrooms Price

2104 3 400

1600 3 330

2400 3 369
...

...
...

I Predict the prices of other houses, as a function of the size of living area and number
of bedrooms?
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Linear Regression (2/2)

I Building a model that takes input x ∈ Rn and predicts output ŷ ∈ R.

I In linear regression, the output ŷ is a linear function of the input x.

ŷ = fw(x) = w1x1 + w2x2 + · · ·+ wnxn

ŷ = wᵀx

• ŷ: the predicted value
• n: the number of features
• xi: the ith feature value
• wj: the jth model parameter (w ∈ Rn)
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Loss Function

I For each value of the w, how close the ŷ(i) is to the corresponding y(i).

I E.g., Mean Squared Error (MSE)

J(w) =
1

m

m∑
i=1

costw(y(i), ŷ(i)) =
1

m

m∑
i=1

(y(i) − ŷ(i))2
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Objective

I Minimizing the loss function J(w).

I Gradient descent

6 / 67



Gradient Descent

I Tweaking parameters w iteratively in order to minimize a loss function J(w).

I Start at a random point, and repeat the following steps, until the stopping criterion
is satisfied:

1. Determine a descent direction ∇J(w)
2. Choose a step size η
3. Update the parameters: w← w − η∇J(w)
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Batch Gradient Descent vs. Mini-Batch Stochastic Gradient
Descent

I Gradient descent
• X is the total dataset.
• J(w) = 1

|X|
∑

x∈X costw(y(i), ŷ(i))

= 1
|X|
∑

x∈X l(x,w)

• w← w − η 1
|X|
∑

x∈X∇l(x,w)

I Mini-batch stochastic gradient descent
• β is the mini-batch, i.e., a random subset of X.
• J(w) = 1

|X|
∑

x∈β costw(y(i), ŷ(i)) = 1
|β|
∑

x∈β l(x,w)

• w← w − η 1
|β|
∑

x∈β ∇l(x,w)
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|X|
∑

x∈X l(x,w)

• w← w − η 1
|X|
∑

x∈X∇l(x,w)

I Mini-batch stochastic gradient descent
• β is the mini-batch, i.e., a random subset of X.
• J(w) = 1

|X|
∑

x∈β costw(y(i), ŷ(i)) = 1
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Binomial Logistic Regression
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Binomial Logistic Regression (1/2)

I Given the dataset of m cancer tests.

Tumor size Cancer

330 1

120 0

400 1
...

...

I Predict the risk of cancer, as a function of the tumor size?
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Binomial Logistic Regression (2/2)

I Linear regression: the model computes the weighted sum of the input features (plus
a bias term).

ŷ = w0x0 + w1x1 + w2x2 + · · ·+ wnxn = wᵀx

I Binomial logistic regression: the model computes a weighted sum of the input features
(plus a bias term), but it outputs the logistic of this result.

z = w0x0 + w1x1 + w2x2 + · · ·+ wnxn = wᵀx

ŷ = σ(z) =
1

1 + e−z
=

1

1 + e−wᵀx
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Loss Function (1/3)

I Naive idea: minimizing the Mean Squared Error (MSE)

cost(ŷ(i), y(i)) = (ŷ(i) − y(i))2

J(w) =
1

m

m∑
i

cost(ŷ(i), y(i)) =
1

m

m∑
i

(ŷ(i) − y(i))2

J(w) = MSE(w) =
1

m

m∑
i

(
1

1 + e−wᵀx(i)
− y(i))2

I This cost function is a non-convex function for parameter optimization.
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Loss Function (2/3)

cost(ŷ(i), y(i)) =

{
−log(ŷ(i)) if y(i) = 1

−log(1− ŷ(i)) if y(i) = 0

when y = 1 when y = 0
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Loss Function (3/3)

I We can define J(w) as below

cost(ŷ(i), y(i)) =

{
−log(ŷ(i)) if y(i) = 1

−log(1− ŷ(i)) if y(i) = 0

J(w) =
1

m

m∑
i

cost(ŷ(i), y(i)) = −1
m

m∑
i

(y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i)))
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cost(ŷ(i), y(i)) = −1
m

m∑
i
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Binomial vs. Multinomial Logistic Regression (1/2)

I In a binomial classifier, y ∈ {0, 1}, the estimator is ŷ = p(y = 1 | x;w).
• We find one set of parameters w.

wᵀ = [w0, w1, · · · , wn]

I In multinomial classifier, y ∈ {1, 2, · · · , k}, we need to estimate the result for each
individual label, i.e., ŷj = p(y = j | x;w).

• We find k set of parameters W.

W =


[w0,1, w1,1, · · · , wn,1]
[w0,2, w1,2, · · · , wn,2]

...
[w0,k, w1,k, · · · , wn,k]

 =


wᵀ

1

wᵀ
2

...
wᵀ

k
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Binomial vs. Multinomial Logistic Regression (2/2)

I In a binary class, y ∈ {0, 1}, we use the sigmoid function.

wᵀx = w0x0 + w1x1 + · · ·+ wnxn

ŷ = p(y = 1 | x;w) = σ(wᵀx) =
1

1 + e−wᵀx

I In multiclasses, y ∈ {1, 2, · · · , k}, we use the softmax function.

wᵀ
jx = w0,jx0 + w1,jx1 + · · ·+ wn,jxn, 1 ≤ j ≤ k

ŷj = p(y = j | x;wj) = σ(wᵀ
jx) =

ew
ᵀ
j x∑k

i=1 e
wᵀ
i x
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Sigmoid vs. Softmax

I Sigmoid function: σ(wᵀx) = 1
1+e−wᵀx

I Softmax function: σ(wᵀ
jx) = e

w
ᵀ
j x∑k

i=1 e
w
ᵀ
i x

• Calculate the probabilities of each target class over all possible target classes.
• The softmax function for two classes is equivalent the sigmoid function.
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Deep Neural Network
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The Linear Threshold Unit (LTU)

I Each input connection is associated with a weight.

I Computes a weighted sum of its inputs and applies a step function to that sum.

I z = w1x1 + w2x2 + · · ·+ wnxn = wᵀx

I ŷ = step(z) = step(wᵀx)
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The Perceptron

I The perceptron is a single layer of LTUs.

I Train the model.

ŷ = fw(X)
J(w) = cost(y, ŷ)
w← w − η∇J(w)
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w← w − η∇J(w)

20 / 67



Feedforward Neural Network Architecture

I A feedforward neural network is composed of:
• One input layer
• One or more hidden layers
• One final output layer
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Training Feedforward Neural Networks

I How to train a feedforward neural network?

I For each training instance x(i) the algorithm does the following steps:

1. Forward pass: make a prediction (i.e., ŷ(i)).
2. Measure the error (i.e., cost(ŷ(i), y(i))).
3. Backward pass: go through each layer in reverse to measure the error contribution from

each connection.
4. Tweak the connection weights to reduce the error (update W and b).

I It’s called the backpropagation training algorithm
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Generalization
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Generalization

I Generalization: make a model that performs well on test data.
• Have a small test error.

I Challenges

1. Make the training error small.
2. Make the gap between training and test error small.

I Overfitting vs. underfitting

[https://ml.berkeley.edu/blog/2017/07/13/tutorial-4]
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Avoiding Overfitting

I Early stopping

I l1 and l2 regularization

I Max-norm regularization

I Dropout

I Data augmentation
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Early Stopping

I As the training steps go by, its prediction error on the training/validation set naturally
goes down.

I After a while the validation error stops decreasing and starts to go back up.
• The model has started to overfit the training data.

I In the early stopping, we stop training when the validation error reaches a minimum.
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l1 and l2 Regularization

I Penalize large values of weights wj.

~J(w) = J(w) + λR(w)

I l1 regression: R(w) = λ
∑n

i=1 |wi| is added to the cost function.

~J(w) = J(w) + λ

n∑
i=1

|wi|

I l2 regression: R(w) = λ
∑n

i=1 w
2
i is added to the cost function.

~J(w) = J(w) + λ

n∑
i=1

w2i
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Max-Norm Regularization

I Max-norm regularization: constrains the weights wj of the incoming connections for
each neuron j.

• Prevents them from getting too large.

I After each training step, clip wj as below, if ||wj||2 > r:

wj ← wj
r

||wj||2
• r is the max-norm hyperparameter

• ||wj||2 = (
∑

i w
2
i,j)

1
2 =

√
w21,j + w22,j + · · ·+ w2n,j
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Dropout (1/2)

I At each training step, each neuron drops out temporarily with a probability p.

• The hyperparameter p is called the dropout rate.
• A neuron will be entirely ignored during this training step.
• It may be active during the next step.
• Exclude the output neurons.

I After training, neurons don’t get dropped anymore.
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Dropout (2/2)

I Each neuron can be either present or absent.

I 2N possible networks, where N is the total
number of droppable neurons.

• N = 4 in this figure.
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Data Augmentation

I One way to make a model generalize better is to train it on more data.

I This will reduce overfitting.

I Create fake data and add it to the training set.
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Batch Size
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Training Deep Neural Networks

I Computationally intensive

I Time consuming

[https://cloud.google.com/tpu/docs/images/inceptionv3onc--oview.png]
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Why?

I Massive amount of training dataset

I Large number of parameters
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Accuracy vs. Data/Model Size

[Jeff Dean at AI Frontiers: Trends and Developments in Deep Learning Research]
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Accuracy vs. Data/Model Size
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Scale Matters
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Distributed Gradient Descent (1/2)

I Replicate a whole model on every device.

I Each device has model replica with a copy of model parameters.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Distributed Gradient Descent (2/2)

I Parameter Server (PS): maintains global model.

I Once each device completes processing, the weights are transferred to PS, which
aggregates all the gradients.

I The PS, then, sends back the results to each device.

[Tang et al., Communication-Efficient Distributed Deep Learning: A Comprehensive Survey, 2020]
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Batch Size vs. Number of GPUs

I w← w − η 1
|β|
∑

x∈β∇l(x,w)

I The more samples processed during each batch, the faster a training job will complete.

I E.g., ImageNet + ResNet-50

[https://medium.com/@emwatz/lessons-for-improving-training-performance-part-1-b5efd0f0dcea]
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Batch Size vs. Time to Accuracy

I ResNet-32 on Titan X GPU

[Peter Pietzuch - Imperial College London]
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Batch Size vs. Validation Error

[Goyal et al., Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, 2018]
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Improve the Validation Error
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Improve the Validation Error

I Scaling learning rate

I Batch normalization

I Label smoothing

I Momentum
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Scaling Learning Rate

I w← w − η 1
|β|
∑

x∈β∇l(x,w).

I Linear scaling: multiply the learning rate by k, when the mini batch size is multiplied
by k.

I Constant warmup: start with a small learning rate for few epochs, and then increase
the learning rate to k times learning rate.

I Gradual warmup: start with a small learning rate, and then gradually increase it by
a constant for each epoch till it reaches k times learning rate.

[Goyal et al., Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, 2018]
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Batch Normalization (1/2)

I Changes in minibatch size change the underlying loss function being optimized.

I Batch Normalization computes statistics along the minibatch dimension.

µβ =
1

|β|
∑
x∈β

x

σ2β =
1

|β|
∑
x∈β

(x− µβ)2

47 / 67



Batch Normalization (1/2)

I Changes in minibatch size change the underlying loss function being optimized.

I Batch Normalization computes statistics along the minibatch dimension.

µβ =
1

|β|
∑
x∈β

x

σ2β =
1

|β|
∑
x∈β

(x− µβ)2

47 / 67



Batch Normalization (1/2)

I Changes in minibatch size change the underlying loss function being optimized.

I Batch Normalization computes statistics along the minibatch dimension.

µβ =
1

|β|
∑
x∈β

x

σ2β =
1

|β|
∑
x∈β

(x− µβ)2

47 / 67



Batch Normalization (2/2)

I Zero-centering and normalizing the inputs, then scaling and shifting the result.

x̂ =
x− µβ√
σ2β + ε

z = αx̂ + γ

I x̂: the zero-centered and normalized input.

I z: the output of the BN operation, which is a scaled and shifted version of the inputs.

I α: the scaling parameter vector for the layer.

I γ: the shifting parameter (offset) vector for the layer.

I ε: a tiny number to avoid division by zero.
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Label Smoothing

I A generalization technique.

I Replaces one-hot encoded label vector yhot with a mixture of yhot and the uniform
distribution.

yls = (1− α)yhot + α/K

I K is the number of label classes, and α is a hyperparameter.

[Shallue et al., Measuring the Effects of Data Parallelism on Neural Network Training, 2019]
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Momentum (1/3)

I Regular gradient descent optimization: w← w − η∇J(w)

I At each iteration, momentum optimization adds the local gradient to the momentum
vector m.

m← βm + η∇J(w)

w← w −m

[Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2019]

50 / 67



Momentum (1/3)

I Regular gradient descent optimization: w← w − η∇J(w)

I At each iteration, momentum optimization adds the local gradient to the momentum
vector m.

m← βm + η∇J(w)

w← w −m
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Momentum (2/3)

I Nesterov momentum measure the gradient of the cost function slightly ahead in the
direction of the momentum.

m = βm + η∇J(w + βm)

w← w −m

[Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2019]
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Momentum (3/3)

[Shallue et al., Measuring the Effects of Data Parallelism on Neural Network Training, 2019]
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CROSSBOW: Scaling Deep Learning with
Small Batch Sizes on Multi-GPU Servers
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I How to design a deep learning system that scales training with multiple GPUs, even
when the preferred batch size is small?
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Crossbow

[Peter Pietzuch - Imperial College London]
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Problem: Small Batches

I Small batch sizes underutilise GPUs.

I One batch per GPU: not enough data and instruction parallelism for every operator.

[Peter Pietzuch - Imperial College London]
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Idea: Multiple Replicas Per GPU

I Train multiple model replicas per GPU.

I A learner is an entity that trains a single model replica independently with a given
batch size.

[Peter Pietzuch - Imperial College London]

I But, now we must synchronise a large number of model replicas.
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Problem: Similiar Starting Point

I All learners always start from the same point.

I Limited exploration of parameter space.

[Peter Pietzuch - Imperial College London]
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Idea: Independent Replicas

I Maintain independent model replicas.

I Increased exploration of space through parallelism.

I Each model replica uses small batch size.

[Peter Pietzuch - Imperial College London]
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Crossbow: Synchronous Model Averaging

I Allow learners to diverge, but correct trajectories based on average model.

I Accelerate average model trajectory with momentum to find minima faster.

[Peter Pietzuch - Imperial College London]
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GPUs with Synchronous Model Averaging

I Synchronously apply corrections to model replicas.

[Peter Pietzuch - Imperial College London]
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GPUs with Synchronous Model Averaging

I Ensures consistent view of average model.

I Takes GPU bandwidth into account during synchronisation.

[Peter Pietzuch - Imperial College London]
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Crossbow

[Peter Pietzuch - Imperial College London]
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Summary
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Summary

I Stochastic Gradient Descent (SGD)

I Generalization
• Regularization
• Max-norm
• Dropout

I Distributed SGD

I Batch size
• Scaling learing rate
• Batch normalization
• Label smoothing
• Momntum

I Crossbow
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Questions?
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