MaggGy: Scalable Asynchronous Parallel Hyperparameter Search

Moritz Meister
moritz@logicalclocks.com
Logical Clocks AB
Stockholm, Sweden

Vladimir Vlassov
vladv@kth.se
KTH Royal Institute of Technology
Stockholm, Sweden

ABSTRACT

Running extensive experiments is essential for building Machine
Learning (ML) models. Such experiments usually require iterative
execution of many trials with varying run times. In recent years,
Apache Spark has become the de-facto standard for parallel data
processing in the industry, in which iterative processes are im-
plemented within the bulk-synchronous parallel (BSP) execution
model. The BSP approach is also being used to parallelize ML trials
in Spark. However, the BSP task synchronization barriers prevent
asynchronous execution of trials, which leads to a reduced number
of trials that can be run on a given computational budget. In this
paper, we introduce MAGGY, an open-source framework based on
Spark, to execute ML trials asynchronously in parallel, with the
ability to early stop poorly performing trials. In the experiments,
we compare MAGGY with the BSP execution of parallel trials in
Spark and show that on random hyperparameter search on a con-
volutional neural network for the Fashion-MNIST dataset MAGGY
reduces the required time to execute a fixed number of trials by
33% to 58%, without any loss in the final model accuracy.

CCS CONCEPTS

« Computing methodologies — Machine learning approaches;
Search methodologies; Parallel computing methodologies.

KEYWORDS

Machine Learning, Scalable Hyperparameter Search, Asynchronous
Hyperparameter Optimization

ACM Reference Format:

Moritz Meister, Sina Sheikholeslami, Amir H. Payberah, Vladimir Vlassov,
and Jim Dowling. 2020. MAGGY: Scalable Asynchronous Parallel Hyperpa-
rameter Search. In st Workshop on Distributed Machine Learning (Distribut-
edML’20), December 1, 2020, Barcelona, Spain. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3426745.3431338

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DistributedML 20, December 1, 2020, Barcelona, Spain

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8182-6/20/12...$15.00
https://doi.org/10.1145/3426745.3431338

Sina Sheikholeslami
sinash@kth.se
KTH Royal Institute of Technology
Stockholm, Sweden

Amir H. Payberah
payberah@kth.se
KTH Royal Institute of Technology
Stockholm, Sweden

Jim Dowling
jdowling@kth.se
KTH Royal Institute of Technology
Logical Clocks AB
Stockholm, Sweden

1 INTRODUCTION

Traditionally, building Machine Learning (ML) models used to be
an expensive and time-consuming process. However recently, Au-
tomated ML (AutoML) approaches have enabled data scientists
to automate many aspects of this process at the cost of increased
computational resources. Nevertheless, many parts of building ML
models behave as black-boxes without gradient information of the
loss available, thus AutoML has to fall back on less efficient search
algorithms to optimize them. These search algorithms are executed
in experiments, where a model is trained with different configura-
tions (such as different learning rates or convolution filter sizes) to
produce a performance metric (such as any loss or accuracy metric),
which are then used by the search algorithm to propose new, poten-
tially better configurations. Training such a model configuration is
referred to as a trial.

In Deep Learning (DL), models are ever-growing in architecture
size and complexity to beat the previous state-of-the-art. However,
training large models with massive amounts of data not only in-
creases the training time, but also causes a state explosion in the
search space, as the performance of these models becomes more
sensitive to a growing number of hyperparameters. Hyperparame-
ters are parameters of an ML model (such as learning rate or choices
about the model’s architecture, regularization, and optimization)
that cannot be optimized by the learning algorithm itself.

These characteristics render search extremely costly, as explod-
ing search spaces require the evaluation of exponentially more
trials. Moreover, to make DL models more robust and explainable, a
new best practice, called ablation studies [18, 21], has evolved that is
in nature similar to hyperparameter search experiments. Ablation
studies require many trials to evaluate the relative contribution of
different architectural and regularization components to models’
performance. Therefore, they also suffer from the same curse of
dimensionality with increasing model size.

Current state-of-the-art solutions for hyperparameter optimiza-
tion (HPO) mainly schedule trials and update the search model asyn-
chronously [8, 15]. Given that Apache Spark [25, 26] has become a
popular data-parallel processing framework, the industry is increas-
ingly building tools to accommodate the advanced algorithms for
HPO on Spark [4, 5]. Spark implements iterative processes, such as
HPO, within the bulk-synchronous parallel (BSP) execution model.
However, the task synchronization barriers in BSP prevent asyn-
chronous execution of trials, which leads to a reduced number of

https://doi.org/10.1145/3426745.3431338
https://doi.org/10.1145/3426745.3431338

DistributedML’20, December 1, 2020, Barcelona, Spain

New Trial Metric Heartbeat ~ Early Stop
N Tasks in parallel e, >

Task 1 . Trial 1 ‘

Task 2| | Trial 2 H 4 ‘
x - —
TaskN | Trial8 |] \ .9 \ ‘
vy, v vi v
Spark Driver [Maggy RPC Server and Controller } J

Figure 1: MAGGY enables driver-to-executor communication
that allows for globally managed asynchronous trials within
the bulk-synchronous model.

trials that can be run on a given computational budget. On the
other hand, actor-based systems with their inherent asynchrony,
like Ray [19], have shown to be a good fit for parallelized ML ex-
periments. Nevertheless, history has shown that general-purpose
programming frameworks (such as Spark), when equipped with spe-
cialized functionalities, tend to dominate specialized frameworks,
in the long run.

In this paper, we introduce MAGGY, a framework for parallel ML
experiments that extends Spark with support for asynchronous
trials, early stopping, and global trial optimization. MAGGY intro-
duces both a programming model for these experiments and a new
driver-to-executor communication protocol that allows for globally
managed asynchronous trials within the bulk-synchronous execu-
tion model (Figure 1). This protocol uses driver-worker heartbeats
to add early-stopping and asynchronous scheduling functional-
ity within Spark tasks, as shown in Figure 1. MAGGY tackles the
following challenges in modern ML model development:

(1) programming support for defining, optimizing, and running
parallel ML experiments;

(2) efficient use of parallel compute resources through asynchro-
nous trials;

(3) support for global directed search in high-dimensional hyper-
parameter search spaces. By global optimization, we mean
that the optimizer has complete and up-to-date knowledge
of all trials’ learning curves and can make decisions on early
stopping of poorly performing trials.

The experimental evaluation of MAaGGY shows that it can re-
duce the run time of experiments with a fixed number of trials,
requiring between 33% and 57% of the time that of a BSP Spark
implementation. This reduction in time is achieved despite the
added overhead of asynchronous communication, scheduling and
performance sampling. The strength of MAGGY becomes apparent
with early stopping, which introduces additional variation in trial
run times and therefore more asynchrony.

2 PRELIMINARY AND RELATED WORK

Although Apache Spark [25, 26] was initially developed for data-
parallel processing, nowadays it provides a unified analytics engine,
including ML applications. With its high-level libraries for SQL
queries on semi-structured data, streaming data, ML, and graph
processing, it became a general-purpose framework. The funda-
mental data structure in Spark is resilient distributed dataset (RDD),
which is a distributed collection of items [25]. The RDD provides

Meister and Sheikholeslami, et al.

Stage 0
N Tasks in parallel

Wi
Task1 | Trial 1 F _ .. Wasted Compute ____

Task2 | Trial 2

Task N | Trial 3 //

Early Stop

Update Search Model and
generate new trials

Figure 2: The bulk synchronous execution of iterations in
Apache Spark only allows new trials to be executed as tasks
at the beginning of a stage. This synchronization barrier re-
sults in wasted computation (when a trial is stopped early,
or due to straggling trials) and delayed updates to the search
model.

Spark Driver

the core abstraction in Spark, enabling data-parallel processing
and fault tolerance. However, the success and ease of use of Spark
come from the high-level APIs building transparently around this
abstraction.

A Spark job is expressed as a directed acyclic graph (DAG), cap-
turing the interdependencies between stages of independent tasks.
Within this computational model, we can parallelize ML experi-
ments by mapping trials to tasks. However, this approach has some
limitations due to the synchronization barrier at the end of a stage
that results in the inability to early stop a poorly performing trial
during a stage and reuse the executor of the task’s available com-
putation resources for other trials during the rest of the stage. The
early stopping can be added to Spark by enabling the driver to
collect statistics on the performance of trials at executors period-
ically, and send messages to workers to stop poorly performing
trials. However, such implementation of early stopping in Spark
still wastes compute resources by not enabling new trials to be run
until the end of the stage (Figure 2).

In contrary to the data-parallelism of Spark, Ray [19] is based on
an actor concurrency model. It provides a flexible and asynchronous
computational model expressed in stateful actors and stateless tasks,
which are executed dynamically, allowing for one task or actor
to spawn new actors/tasks. The Ray asynchronous computation
model makes it more suitable for iterative workloads. Ray ships
with a Python library for scalable hyperparameter tuning, called
Tune [16]. It integrates with many ML frameworks (such as Keras,
PyTorch, and XGBoost), and comes with its own implementations of
popular optimization algorithms and provides support for a variety
of third-party optimization libraries and services like HyperOpt [4,
5], Bayesian Optimization (BO) [23], and Google Vizier [10]. Due
to its asynchrony, Tune can support early stopping, as well as
multi-fidelity methods, such as HyperBand [14], BOHB [8], and
ASHA [15].

HyperOpt [4, 5] is a Python library for distributed asynchronous
HPO that has similar goals to MAGGY and was recently extended by
a backend supporting distribution via Apache Spark. To overcome
the inefficiencies of synchronous stages in Spark, Hyperopt maps
ML trials to jobs with only one task. These jobs can then be executed
asynchronously. However, this approach requires maintaining a
thread for each scheduled job in the Spark driver, even if the job

MAGGY: Scalable Asynchronous Parallel Hyperparameter Search

is not running yet, to retrieve the job’s results. The Spark driver
typically runs on few computational resources and can therefore
become a bottleneck. Moreover, this design adds the overhead of
starting a new job for each trial. This architecture also does not
support global early stopping decisions. The optimizer is unaware
of the current performance of the trials being trained. Therefore, it
cannot make decisions on early stopping taking into account the
knowledge about all learning curves.

Keras is a popular high-level API for TensorFlow [1] and comes
with a Python library to tune models, KerasTuner [20]. KerasTuner
integrates seamlessly with the Keras APIs and enables distributed
experiments by starting the experiment script on different ma-
chines or processes. In the vision of Keras, KerasTuner integrates
with the Google Cloud APIs to automate the process of starting
worker nodes in the Google Cloud account of a user [6]. KerasTuner
provides implementations of a variation of HyperBand [14] and
Bayesian Optimization [23], but no explicit support for early stop-
ping. A unique feature of KerasTuner is the possibility of intra-trial
distribution to scale the training of single trials.

3 HYPERPARAMETER OPTIMIZATION (HPO)

In this section, we briefly recall some basic concepts from hyper-
parameter optimization (HPO). While AutoML aims to automate
all aspects of the ML development process, a basic subproblem to
solve is finding hyperparameters to maximize the performance of a
model. Hutter et al. [11] provide a rich survey of AutoML methods,
systems, and challenges, and classify HPO methods along two di-
mensions: black-box HPO and multi-fidelity optimization. However,
we believe that considering the underlying execution systems, a
third dimension should be added, which is the execution strategy.
The characteristics of methods in both the previous classes might
be altered when executed in parallel or asynchronously, and the
execution strategy dimension introduces more opportunities for
new methods. This section serves as an overview for state-of-the-
art HPO extended by considerations for the execution strategy and
argues for the need for an asynchronous system to support these.

3.1 Black-box Hyperparameter Optimization

Blackbox optimization methods are split into two subsets, model-free
(undirected search) and model-based (directed search) optimization.
The former method, such as grid or random search, can be run in
parallel without further coordination, as trials can be generated
ahead of time. In particular, random search is a popular baseline,
since it can find configurations with performance arbitrarily close
to the optimum if it has enough computational resources [11].

On the other hand, model-based methods, like BO [23], are in-
herently sequential and require coordination to collect metrics and
update the optimization model. BO samples the next trial to be
evaluated based on previous iterations’ results by using Bayesian
posterior updates to a surrogate model, and encoding the prior
belief over the objective function. The surrogate model’s predictive
distribution enables acquisition functions to determine the utility
of different candidate points at low cost, trading off exploration
and exploitation of the search space.

In the parallel setting, several points should be sampled based on
the same information. However, if we apply deterministic strategies,

DistributedML’20, December 1, 2020, Barcelona, Spain

each worker would evaluate the same configuration. A straightfor-
ward approach to deploy BO in an asynchronous parallel execution
strategy is to impute the result of pending trials [9] with a constant
(constant liar approach) or a Gaussian Process (GP) [9] predictive
mean (Kriging Believer).

Other approaches, such as Thompson Sampling (TS) [13] or Tree
Parzen Estimators (TPE) [5], use penalization around the locations
of pending trials to encourage diversity (PLAyBOOK algorithm)
[2] or sampling through a stochastic process, purposefully not to
optimize the acquisition function fully to incorporate diversity.
These asynchrony-enabling methods have shown to outperform
their synchronous counterparts [2, 5, 13].

3.2 Multi-fidelity Optimization and Early
Stopping

Multi-fidelity optimization methods rely on evaluating many trials
on small computational budgets (low fidelities) and allocating more
budget to a few promising trials. Here, for example, the budget
can be the number of epochs for training a neural network and
the amount of data used for training. Successive Halving (SHA)
[12] and its successors HyperBand [14] and Asynchronous Suc-
cessive Halving (ASHA) [15] are three examples of multi-fidelity
optimization. Both SHA and HyperBand or ASHA rely on ran-
dom sampling to generate new hyperparameter configurations. In
contrast, Falkner et al. [8] introduce BOHB that uses TPE [5] to-
gether with HyperBand [14] and achieve the performance above
state-of-the-art results on several ML benchmark problems. While
fidelity optimization makes the budget allocation decision before
starting a trial, other approaches make early stopping decisions at
runtime. Such methods are performance curve prediction [3] or
simple heuristics like median stopping rules, as used by Google
Vizier [10]. Again, these methods benefit from a central source of
truth with knowledge of all trials’ learning curves to make optimal
early stopping decisions.

4 MAGGY

In this section, we introduce MAGGY, a system for asynchronous
parallel HPO. Below, we first describe MAGGY’s programming model
and then explain its implementation details. MAGGY is open-source
and available at the following link!.

4.1 Programming Models

Parallel computing support for model training and HPO offers many
benefits, such as the ability to reduce training time and hyperpa-
rameter experiments by adding more compute resources . However,
parallel execution introduces additional obtrusive code artifacts
and modifications, depending on the frameworks used, which leads
to infrastructure code mixed with model training code. The pro-
gramming model of MAGGY can help avoid the problem of mixing
infrastructure and training logic by enabling write-once and trans-
parently distributed training functions. The same code, then, can
be reused in Python program on a laptop or a cluster-scale PySpark
program. The programs, written in MAGGY framework, are oblivious

!https://github.com/logicalclocks/maggy

DistributedML’20, December 1, 2020, Barcelona, Spain

training functions [17] as we factor out distribution-related depen-
dencies using best-practice programming idioms (such as functions
to generate models and data batches).

In MAGGY, users define the training logic in a (higher-order)
function that returns the models performance metric (e.g., any
loss or accuracy metric), which is to be optimized. The function is
parametrized with hyperparameters and generator functions for
the model and data (Listing 1). This function, then, is launched with
a user-specified search space and optimizer through the lagom?
API (Listing 2).

def train_fn(hparaml, hparam2, ..., model_fn, dataset_fn):
model = model_fn(hparaml, hparam2)
model . compile(hparam3)
train, test, val = dataset_fn()
model.fit(train, ...)
metric = model.evaluate(test, ...)
return metric["metric_to_be_optimized"]

Listing 1: Example of an oblivious training function.

from maggy import experiment, Searchspace
searchspace = Searchspace(hparam1=('DOUBLE', [0,1]1), ...)
experiment.lagom(train_fn, controller="BOHB", searchspace)

Listing 2: Example of launching an experiment with lagom.

This way, MAGGY instantiates the training function with different
sets of parameters and launches them as trials on Spark executors,
without requiring users to write code managing the distribution
and execution of the training logic on the workers. In return, the
users will get the metrics to be optimized from the training function,
or a collection of items to be tracked along with the experiment
and specify which returned metric is to be optimized. Note that
the produced code is still pure Python code, and it can be run on a
cluster of machines as on a single host environment by fixing the
parameters and inputs.

MagGy currently ships with implementations of random search
and BO (TPE [5] and GP [9]) as optimizers and HyperBand, ASHA,
and a median stopping rule for early stopping. However, MAGGY
provides base classes for both these entities as part of a developer
API to make it extensible. Users can implement their own optimizers
or early stopping rules.

4.2 Design and Implementation

MAGGY is built on top of Spark and provides an easy to use and
scalable system for ML experiments, with support for GPUs from
version 3.0. In principle, MAGGY uses Spark as a resource manager
with enhanced fault tolerance support. MAGGY executes experi-
ments as launching Spark applications, where the requested num-
ber of executors (degree of parallelism) are each blocked with one
long-running task, executing trials in a loop until the experiment
finishes.

MAGGY provides the aforementioned functionality through a
non-blocking RPC framework built within the Spark driver and
executors (Figure 3). On the driver-side, MAGGY runs a controller

?Lagom is a Swedish word meaning "just the right amount".

Meister and Sheikholeslami, et al.

Spark Driver Get Trial Spark Task (Executor)
Message N i
Sione RPC Server Heartbeat RPC Client
(logs/metric) -
Controller 4 iN
Ablator/Optimizer lookups Trial/Stop -
Spark Task (Executor)
_ﬁ Shared data)
Modify RPC Client

Figure 3: MAGGY is setup as a RPC framework within the
Spark Driver and Executors. The figure shows the entities
and the flow of information for the communication protocol
and runtime behaviour.

thread responsible for the experiment’s global control, such as trial
generation and early stopping. It communicates with a RPC server
thread by modifying controls in a shared data layer and a message
queue. The RPC server then responds to the clients’ requests by
performing lookups on the shared data or forwarding the message
to the controller. The shared data layer is required for the server
not to block until the controller executed the remote procedure,
such as sampling a new trial. To avoid the driver becoming a single
point of failure, a distributed file system or cloud storage can be
leveraged to persist controller state.

On the other side, each executor runs a RPC client that requests
and starts new trials, sends heartbeats with the current training
metric during training, and can early stop a trial when it receives a
stop signal in response to a heartbeat. A client polls for new trials
and receives early stopping decisions as a response to the heartbeats
sent with the current training metric. The client is stateless, hence,
in case of failure, Spark can easily restart the task and start a new
client polling for trials. In scenarios of experiments with runs for
long periods of time, this results in the loss of single trials, which
are transparently rescheduled by the controller. A worker that
repeatably fails to execute trials is blacklisted from receiving future
trials.

A crucial point for collecting the current training metric for early
stopping is the connection between the user code and the RPC client.
In order to hook into the user code, users have two options (Listing
3), either (i) make use of a reporter API to broadcast the metric
with a heartbeat at the end of an iteration manually, or (ii) if a high-
level framework like Keras is used, MAGGY provides callbacks to
be added to the training logic, doing the same thing automatically.
Approach (i) is especially useful for cases when the iteration loop
is programmed by the user itself, as it is the case in PyTorch, for
example.

5 EXPERIMENTS

We evaluated MAGGY by comparing its performance with synchro-
nous parallel trials on Spark (equivalent to existing parallel hyper-
parameter tuning frameworks on Spark, such as Databricks’ Hy-
perOpt [7]). We trained a three-layer convolutional neural network
with a fully connected layer on the Fashion-MNIST [24] dataset.
Compared to MNIST, Fashion-MNIST requires more time to train
and is more difficult to get high accuracy on, enabling us to measure
the effect of early stopping. We apply the median early-stopping

MAGGY: Scalable Asynchronous Parallel Hyperparameter Search

(1)
from maggy import reporter
for current_epoch in range(epochs):

reporter.broadcast(metric=accuracy, step=current_epoch)

(ii)
from maggy.callbacks import KerasEpochEnd
callback = KerasEpochEnd(reporter, 'val_acc')

keras.fit(..., callbacks=[callback], ...)

Listing 3: The reporter API is used to broadcast a specified
metric in the heartbeats to the controller, or via the Keras
Callback interface.

rule [22] in MAGGY to stop trials performing worse than the me-
dian after the first four trials have completed at the same point in
time during training (in terms of stochastic gradient descent opti-
mization steps). In experiments on MAGGY and Spark (synchronous
parallel trials), we run a fixed number of trials (N=100) with random
search for hyperparameters. We vary the number of workers from
4, to 8, to 16, to 32. The space of hyperparameters explored using
random search in both MAaGGY and Spark is as shown in Listing 4.

sp = Searchspace(kernel=("'INTEGER', [2, 81),
pool=('INTEGER', [2, 81), dropout=('DOUBLE', [0.01, 0.991),
learning_rate=('DOUBLE', [0.000001, ©.991))

Listing 4: Hyperparameter space for Fashion-MNIST.

The performance of hyperparameter tuning experiments is closely
linked to the sensitivity of the model being tuned to small changes
in hyperparameters and the relative number of points in hyper-
parameter space that contains poorly performing hyperparameter

Time to finalize 100 trials for Maggy vs. Spark
7001 0.905

B Spark
Maggy

time (minutes)

4 8 16 32
Number of Workers

Figure 4: Asynchronous trials and the median stopping rule
in MAGGY enables N=100 trials to be executed in lower wall-
clock time compared to Spark without any loss in accuracy
(denoted on top of the bars). Adding more workers linearly
reduces the total time required to execute all hyperparam-
eter trials, both for Maggy and Spark. MaGgGY’s reduced ex-
ecution time holds for varying number of workers (W=4, 8,
16, 32).

DistributedML’20, December 1, 2020, Barcelona, Spain

Table 1: Relative speedup of MAGGY over the general Spark
implementation, total experiment runtime in seconds and
number of early stopped trials by MaGGy.

Workers | MagGy/Spark | MAGGyY (s) | Spark (s) | Early-Stop
4 0.41 16284 40051 54
8 0.33 9828 29511 52
16 0.47 6486 13745 47
32 0.58 3804 6474 44

Table 2: Final accuracy after 100 trials.

Workers | MAGGY Accuracy | Spark Accuracy
4 0.915 0.905
8 0.909 0.912
16 0.909 0.913
32 0.913 0.909

combinations. The Fashion-MNIST hyperparameter space used in
these experiments is relatively homogeneous, and we can see that
all experiments converged to very similar accuracy. Other networks,
such as Generative Adversarial Networks are notoriously difficult
to produce reproducible experiments.

As we can see in Figure 4 and Figure 5, MAGGY reduces the
wallclock time for random search hyperparameter trials by roughly
half when using the median early-stopping rule, without any loss
in accuracy. In Table 1, we can see that the median stopping rule
stops, on average, half of the trials, reducing total execution time
by approximately half. In Table 2, we can see that both MaGGy and
Spark converge to similar accuracy, even though half of MAGGY’s
under-performing trials were stopped early.

6 CONCLUSION

Spark is now a popular general purpose programming framework
that is used at all stages in machine learning pipelines, from feature
engineering to parallel hyperparameter tuning to distributed model
training. However, actor-based frameworks have shown better per-
formance for asynchronous ML trials, leading many developers to
switch part of their pipelines to such frameworks. In this paper,
we introduced MAGGY as an extension to Spark’s synchronous pro-
cessing model to allow it to run asynchronous ML trials, enabling
end-to-end state-of-the-art ML pipelines to be run fully on Spark.
MAGGY provides programming support for defining, optimizing,
and running parallel ML trials. Users can define their own global
optimizer for directed search in a high-dimensional hyperparameter
search space, and the MAGGY runtime will manage the performance
monitoring, scheduling, and early-stopping of asynchronous trials
within Spark’s synchronous execution model.

ACKNOWLEDGMENTS

This work is supported by the ExtremeEarth® project funded by Eu-
ropean Union’s Horizon 2020 Research and Innovation Programme
under Grant Agreement No. 825258.

SExtremeEarth project website: http://earthanalytics.eu

DistributedML’20, December 1, 2020, Barcelona, Spain

4 Workers

Meister and Sheikholeslami, et al.

8 Workers

0.92
0901 o f
0.88

>

3 0.86

3
g 0.84
<
0.82
0.80

0.78 T T T T T

16 Workers
0.92

0.90 J—‘_r_

0.88
>
3 0.86
3
5 0.84
<
0.82
0.80

32 Workers

Implementation

Maggy
—— Spark

0.78
0

time (minutes)

100 200 300 400 500 600 700

100 200 300 400 500 600 700
time (minutes)

Figure 5: MAGGY finds better configurations faster due to asynchronous trials and the median stopping rule in MAGGY. Due
to shorter trials, MaGGY concludes experiments with the same number of trials in shorter wallclock time. In Spark, trials are
executed to completion (no early stopping), yielding similar accuracy as expected, but resulting in higher wallclock time to
execute N=100 trials compared to MAGGY.

REFERENCES

(1]

s

=

(4]

(5]

[11]

[12

[13]

[14

[15

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th { USENIX}
symposium on operating systems design and implementation ({OSDI} 16). 265-283.
Ahsan S Alvi, Binxin Ru, Jan Calliess, Stephen J Roberts, and Michael A Os-
borne. 2019. Asynchronous Batch Bayesian Optimisation with Improved Local
Penalisation. arXiv preprint arXiv:1901.10452 (2019).

Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. 2017. Practical
Neural Network Performance Prediction for Early Stopping. arXiv preprint
arXiv:1705.10823 2, 3 (2017), 6.

James Bergstra, Daniel Yamins, and David Cox. 2012. Hyperopt: Distributed
Asynchronous Hyper-parameter Optimization. Retrieved May 21, 2020 from
http://hyperopt.github.io/hyperopt

James Bergstra, Daniel Yamins, and David Cox. 2013. Making a Science of Model
Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision
Architectures. In International Conference on Machine Learning. 115-123.
Francois Chollet. 2020. Keras: The Next Five Years. Retrieved May 21, 2020 from
https://www.youtube.com/watch?v=HBqCpWI1dPII

Databricks. 2019. Scaling Hyperopt to Tune Machine Learning Models in Python.
Retrieved Sep 18, 2020 from https://databricks.com/blog/2019/10/29/scaling-
hyperopt-to-tune-machine-learning- models-in- python.html

Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and Efficient
Hyperparameter Optimization at Scale. arXiv preprint arXiv:1807.01774 (2018).
David Ginsbourger, Janis Janusevskis, and Rodolphe Le Riche. 2011. Dealing
with Asynchronicity in Parallel Gaussian Process based Global Optimization.
Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro,
and D Sculley. 2017. Google Vizier: A Service for Black-Box Optimization. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 1487-1495.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. 2019. Automated Machine
Learning: Methods, Systems, Challenges. Springer Nature.

Kevin Jamieson and Ameet Talwalkar. 2016. Non-stochastic Best Arm Identifi-
cation and Hyperparameter Optimization. In Artificial Intelligence and Statistics.
240-248.

Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabas
Péczos. 2018. Parallelised Bayesian Optimisation via Thompson Sampling. In
International Conference on Artificial Intelligence and Statistics. 133-142.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2017. Hyperband: A Novel Bandit-Based Approach to Hyperparameter
Optimization. The Journal of Machine Learning Research 18, 1 (2017), 6765-6816.
Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Moritz Hardt,
Benjamin Recht, and Ameet Talwalkar. 2018. Massively Parallel Hyperparameter
Tuning. arXiv preprint arXiv:1810.05934 (2018).

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez,
and Jon Stoica. 2018. Tune: A Research Platform for Distributed Model Selection
and Training. arXiv preprint arXiv:1807.05118 (2018).

Moritz Meister, Sina Sheikholeslami, Robin Andersson, Alexandru A Ormenisan,
and Jim Dowling. 2020. Towards Distribution Transparency for Supervised ML
With Oblivious Training Functions. In Workshop on MLOps Systems.

Richard Meyes, Melanie Lu, Constantin Waubert de Puiseau, and Tobias
Meisen. 2019. Ablation Studies in Artificial Neural Networks. arXiv preprint
arXiv:1901.08644 (2019).

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan,
et al. 2018. Ray: A Distributed Framework for Emerging Al Applications. In 13th
{USENIX} Symposium on Operating Systems Design and Implementation ({ OSDI}
18). 561-577.

Tom O’Malley, Elie Bursztein, James Long, Francois Chollet, Haifeng Jin, Luca
Invernizzi, et al. 2019. Keras Tuner. Retrieved May 21, 2020 from https://github.
com/keras-team/keras-tuner

Mohammad Pezeshki, Linxi Fan, Philemon Brakel, Aaron Courville, and Yoshua
Bengio. 2016. Deconstructing the Ladder Network Architecture. In International
Conference on Machine Learning. 2368-2376.

Lutz Prechelt. 1998. Early stopping-but when? In Neural Networks: Tricks of the
trade. Springer, 55-69.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Fre-
itas. 2015. Taking the Human Out of the Loop: A Review of Bayesian Optimization.
Proc. IEEE 104, 1 (2015), 148-175.

Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms. arXiv preprint
arXiv:1708.07747 (2017).

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster
Computing. In Presented as part of the 9th { USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 12). 15-28.

Matei Zaharia, Mosharaf Chowdhury, Michael] Franklin, Scott Shenker, Ion
Stoica, et al. 2010. Spark: Cluster computing with working sets. HotCloud 10,
10-10 (2010), 95.

http://hyperopt.github.io/hyperopt
https://www.youtube.com/watch?v=HBqCpWldPII
https://databricks.com/blog/2019/10/29/scaling-hyperopt-to-tune-machine-learning-models-in-python.html
https://databricks.com/blog/2019/10/29/scaling-hyperopt-to-tune-machine-learning-models-in-python.html
https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner

	Abstract
	1 Introduction
	2 Preliminary and Related Work
	3 Hyperparameter Optimization (HPO)
	3.1 Black-box Hyperparameter Optimization
	3.2 Multi-fidelity Optimization and Early Stopping

	4 Maggy
	4.1 Programming Models
	4.2 Design and Implementation

	5 Experiments
	6 Conclusion
	Acknowledgments
	References

