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Abstract
Learning node embeddings that capture a node’s
position within the broader graph structure is cru-
cial for many prediction tasks on graphs. How-
ever, existing Graph Neural Network (GNN) ar-
chitectures have limited power in capturing the
position/location of a given node with respect
to all other nodes of the graph. Here we pro-
pose Position-aware Graph Neural Networks (P-
GNNs), a new class of GNNs for computing
position-aware node embeddings. P-GNN first
samples sets of anchor nodes, computes the dis-
tance of a given target node to each anchor-set,
and then learns a non-linear distance-weighted ag-
gregation scheme over the anchor-sets. This way
P-GNNs can capture positions/locations of nodes
with respect to the anchor nodes. P-GNNs have
several advantages: they are inductive, scalable,
and can incorporate node feature information. We
apply P-GNNs to multiple prediction tasks includ-
ing link prediction and community detection. We
show that P-GNNs consistently outperform state
of the art GNNs, with up to 66% improvement in
terms of the ROC AUC score.

1. Introduction
Learning low-dimensional vector representations of nodes in
graphs (Hamilton et al., 2017b) has led to advances on tasks
such as node classification (Kipf & Welling, 2017), link
prediction (Grover & Leskovec, 2016), graph classification
(Ying et al., 2018b) and graph generation (You et al., 2018b),
with successful applications across domains such as social
and information networks (Ying et al., 2018a), chemistry
(You et al., 2018a), and biology (Zitnik & Leskovec, 2017).

Node embedding methods can be categorized into Graph
Neural Networks (GNNs) approaches (Scarselli et al., 2009),

1Department of Computer Science, Stanford University,
Stanford, CA, USA. Correspondence to: Jiaxuan You <jiax-
uan@cs.stanford.edu>, Jure Leskovec <jure@cs.stanford.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

matrix-factorization approaches (Belkin & Niyogi, 2002),
and random-walk approaches (Perozzi et al., 2014). Among
these, GNNs are currently the most popular paradigm,
largely owing to their efficiency and inductive learning ca-
pability (Hamilton et al., 2017a). By contrast, random-walk
approaches (Perozzi et al., 2014; Grover & Leskovec, 2016)
are limited to transductive settings and cannot incorporate
node attributes. In the GNN framework, the embedding of a
node is computed by a GNN layer aggregating information
from the node’s network neighbors via non-linear transfor-
mation and aggregation functions (Battaglia et al., 2018).
Long-range node dependencies can be captured via stacking
multiple GNN layers, allowing the information to propagate
for multiple-hops (Xu et al., 2018).

However, the key limitation of existing GNN architectures
is that they fail to capture the position/location of the node
within the broader context of the graph structure. For exam-
ple, if two nodes reside in very different parts of the graph
but have topologically the same (local) neighbourhood struc-
ture, they will have identical GNN structure. Therefore, the
GNN will embed them to the same point in the embedding
space (we ignore node attributes for now). Figure 1 gives an
example where a GNN cannot distinguish between nodes
v1 and v2 and will always embed them to the same point be-
cause they have isomorphic network neighborhoods. Thus,
GNNs will never be able to classify nodes v1 and v2 into dif-
ferent classes because from the GNN point of view they are
indistinguishable (again, not considering node attributes).
Researchers have spotted this weakness (Xu et al., 2019)
and developed heuristics to fix the issue: augmenting node
features with one-hot encodings (Kipf & Welling, 2017),
or making GNNs deeper (Selsam et al., 2019). However,
models trained with one-hot encodings cannot generalize
to unseen graphs, and arbitrarily deep GNNs still cannot
distinguish structurally isomorphic nodes (Figure 1).

Here we propose Position-aware Graph Neural Networks
(P-GNNs), a new class of Graph Neural Networks for com-
puting node embeddings that incorporate a node’s positional
information with respect to all other nodes in the network,
while also retaining inductive capability and utilizing node
features. Our key observation is that node position can be
captured by a low-distortion embedding by quantifying the
distance between a given node and a set of anchor nodes.
Specifically, P-GNN uses a sampling strategy with theoreti-
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Figure 1. Example graph where GNN is not able to distinguish and
thus classify nodes v1 and v2 into different classes based on the
network structure alone. (Note we do not consider node features.)
Each node is labeled based on its label A or B, and effective node
embedding should be able to learn to distinguish nodes v1 and v2
(that is, embed them into different points in the space). However,
GNNs, regardless of depth, will always assign the same embedding
to both nodes, because the two nodes are symmetric/isomorphic
in the graph, and their GNN rooted subtrees used for message
aggregation are the same. In contrast, P-GNNs can break the
symmetry by using v3 as the anchor-set, then the shortest path
distances (v1, v3) and (v2, v3) are different and nodes v1 and v2
can thus be distinguished.

cal guarantees to choose k random subsets of nodes called
anchor-sets. To compute a node’s embedding, P-GNN first
samples multiple anchor-sets in each forward pass, then
learns a non-linear aggregation scheme that combines node
feature information from each anchor-set and weighs it by
the distance between the node and the anchor-set. Such ag-
gregations can be naturally chained and combined into mul-
tiple layers to enhance model expressiveness. Bourgain the-
orem (Bourgain, 1985) guarantees that only k = O(log2 n)
anchor-sets are needed to preserve the distances in the origi-
nal graph with low distortion.

We demonstrate the P-GNN framework in various real-
world graph-based prediction tasks. In settings where node
attributes are not available, P-GNN’s computation of the
k dimensional distance vector is inductive across different
node orderings and different graphs. When node attributes
are available, a node’s embedding is further enriched by
aggregating information from all anchor-sets, weighted by
the k dimensional distance vector. Furthermore, we show
theoretically that P-GNNs are more general and expressive
than traditional message-passing GNNs. In fact, message-
passing GNNs can be viewed as special cases of P-GNNs
with degenerated distance metrics and anchor-set sampling
strategies. In large-scale applications, computing distances
between nodes can be prohibitively expensive. Therefore,
we also propose P-GNN-Fast which adopts approximate
node distance computation. We show that P-GNN-Fast
has the same computational complexity as traditional GNN

models while still preserving the benefits of P-GNN.

We apply P-GNNs to 8 different datasets and several dif-
ferent prediction tasks including link prediction and com-
munity detection1. In all datasets and prediction tasks, we
show that P-GNNs consistently outperforms state of the art
GNN variants, with up to 66% AUC score improvement.

2. Related Work
Existing GNN models belong to a family of graph message-
passing architectures that use different aggregation schemes
for a node to aggregate feature messages from its neigh-
bors in the graph: Graph Convolutional Networks use mean
pooling (Kipf & Welling, 2017); GraphSAGE concatenates
the node’s feature in addition to mean/max/LSTM pooled
neighborhood information (Hamilton et al., 2017a); Graph
Attention Networks aggregate neighborhood information
according to trainable attention weights (Velickovic et al.,
2018); Message Passing Neural Networks further incorpo-
rate edge information when doing the aggregation (Gilmer
et al., 2017); And, Graph Networks further consider global
graph information during aggregation (Battaglia et al., 2018).
However, all these models focus on learning node embed-
dings that capture local network structure around a given
node. Such models are at most as powerful as the WL graph
isomorphism test (Xu et al., 2019), which means that they
cannot distinguish nodes at symmetric/isomorphic positions
in the network (Figure 1). That is, without relying on the
node feature information, above models will always embed
nodes at symmetric positions into same embedding vectors,
which means that such nodes are indistinguishable from the
GNN’s point of view.

Heuristics that alleviate the above issues include assigning
an unique identifier to each node (Kipf & Welling, 2017;
Hamilton et al., 2017a) or using locally assigned node iden-
tifiers plus pre-trained transductive node features (Zhang
& Chen, 2018). However, such models are not scalable
and cannot generalize to unseen graphs where the canon-
ical node ordering is not available. In contrast, P-GNNs
can capture positional information without sacrificing other
advantages of GNNs.

One alternative method to incorporate positional informa-
tion is utilizing a graph kernel, which crucially rely on the
positional information of nodes and inspired our P-GNN
model. Graph kernels implicitly or explicitly map graphs to
a Hilbert space. Weisfeiler-Lehman and Subgraph kernels
have been incorporated into deep graph kernels (Yanardag
& Vishwanathan, 2015) to capture structural properties of
neighborhoods. Gärtner et al. (2003) and Kashima et al.
(2003) also proposed graph kernels based on random walks,

1Code and data are available in https://github.com/
JiaxuanYou/P-GNN/
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which count the number of walks two graphs have in com-
mon (Sugiyama & Borgwardt, 2015). Kernels based on
shortest paths were first proposed in (Borgwardt & Kriegel,
2005).

3. Preliminaries
3.1. Notation and Problem Definition

A graph can be represented as G = (V, E), where V =
{v1, ..., vn} is the node set and E is the edge set. In many
applications where nodes have attributes, we augment G
with the node feature set X = {x1, ...,xn} where xi is the
feature vector associated with node vi.

Predictions on graphs are made by first embedding nodes
into a low-dimensional space which is then fed into a clas-
sifier, potentially in an end-to-end fashion. Specifically,
a node embedding model can be written as a function
f : V → Z that maps nodes V to d-dimensional vectors
Z = {z1, ..., zn}, zi ∈ Rd.

3.2. Limitations of Structure-aware Embeddings

Our goal is to learn embeddings that capture the local net-
work structure as well as retain the global network position
of a given node. We call node embeddings to be position-
aware, if the embedding of two nodes can be used to (ap-
proximately) recover their shortest path distance in the net-
work. This property is crucial for many prediction tasks,
such as link prediction and community detection. We show
below that GNN-based embeddings cannot recover shortest
path distances between nodes, which may lead to suboptimal
performance in tasks where such information is needed.

Definition 1. A node embedding zi = fp(vi),∀vi ∈ V is
position-aware if there exists a function gp(·, ·) such that
dsp(vi, vj) = gp(zi, zj), where dsp(·, ·) is the shortest path
distance in G.

Definition 2. A node embedding zi = fsq (vi),∀vi ∈
V is structure-aware if it is a function of up to q-hop
network neighbourhood of node vi. Specifically, zi =
gs(N1(vi), ..., Nq(vi)), whereNk(vi) is the set of the nodes
k-hops away from node vi, and gs can be any function.

For example, most graph neural networks compute node
embeddings by aggregating information from each node’s q-
hop neighborhood, and are thus structure-aware. In contrast,
(long) random-walk-based embeddings such as DeepWalk
and Node2Vec are position-aware, since their objective func-
tion forces nodes that are close in the shortest path to also be
close in the embedding space. In general, structure-aware
embeddings cannot be mapped to position-aware embed-
dings. Therefore, when the learning task requires node posi-
tional information, only using structure-aware embeddings
as input is not sufficient:

Proposition 1. There exists a mapping g that maps
structure-aware embeddings fsq (vi),∀vi ∈ V to position-
aware embeddings fp(vi),∀vi ∈ V , if and only if no pair of
nodes have isomorphic local q-hop neighbourhood graphs.

Proposition 1 is proved in the Appendix. The proof is based
on the identifiability arguments similar to the proof of Theo-
rem 1 in (Hamilton et al., 2017a), and also explains why in
some cases GNNs may perform well in tasks requiring posi-
tional information. However, in real-world graphs such as
molecules and social networks, the structural equivalences
between nodes’ local neighbourhood graphs are quite com-
mon, making GNNs hard to identify different nodes. Fur-
thermore, the mapping g essentially memorizes the shortest
path distance between a pair of structure-aware node embed-
dings whose local neighbourhoods are unique. Therefore,
even if the GNN perfectly learns the mapping g, it cannot
generalize to the mapping to new graphs.

4. Proposed Approach
In this section, we first describe the P-GNN framework that
extends GNNs to learn position-aware node embeddings.
We follow by a discussion on our model designing choices.
Last, we theoretically show how P-GNNs generalize exist-
ing GNNs and learn position-aware embeddings.

4.1. The Framework of P-GNNs

We propose Position-aware Graph Neural Networks that
generalize the concepts of Graph Neural Networks with
two key insights. First, when computing the node embed-
ding, instead of only aggregating messages computed from
a node’s local network neighbourhood, we allow P-GNNs to
aggregate messages from anchor-sets, which are randomly
chosen subsets of all the nodes (Figure 2, left). Note that an-
chor sets get resampled every time the model is run forward.
Secondly, when performing message aggregation, instead
of letting each node aggregate information independently,
the aggregation is coupled across all the nodes in order to
distinguish nodes with different positions in the network
(Figure 2, middle). We design P-GNNs such that each node
embedding dimension corresponds to messages computed
with respect to one anchor-set, which makes the computed
node embeddings position-aware (Figure 2, right).

P-GNNs contain the following key components:
• k anchor-sets Si of different sizes.
•Message computation function F that combines fea-

ture information of two nodes with their network distance.
•Matrix M of anchor-set messages, where each row i

is an anchor-set messageMi computed by F .
• Trainable aggregation functions AGGM , AGGS that

aggregate/transform feature information of the nodes in the
anchor-set and then also aggregate it across the anchor-sets.
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Figure 2. P-GNN architecture. P-GNN first samples multiple anchor-sets S = {S1, S2, S3} of different sizes (Left). Then, position-aware
node embeddings zvi are computed via messages Mvi between a given node vi and the anchor-sets Si which are shared across all the
nodes (Middle). To compute the embedding zv1 for node v1, one layer of P-GNN first computes messages via function F and then
aggregates them via a learnable function AGGM over the nodes in each anchor-set Si to obtain a matrix of anchor-set messages Mv1 .
The message matrix Mv1 is then further aggregated using a learnable function AGGS to obtain node v1’s message hv1 that can be passed
to the next level of P-GNN. At the same time a learned vector w is used reduce Mv1 into a fixed-size position-aware embedding zv1
which is the output of the P-GNN (Right).

• Trainable vector w that projects message matrix M to
a lower-dimensional embedding space z ∈ Rk.

Algorithm 1 summarizes the general framework of P-GNNs.
A P-GNN consists of multiple P-GNN layers. Concretely,
the lth P-GNN layer first samples k random anchor-sets Si.
Then, the ith dimension of the output node embedding zv
represents messages computed with respect to the ith anchor-
set Si. Each dimension of the embedding is obtained by
first computing the message from each node in the anchor-
set via message computation function F , then applying a
message aggregation function AGGM , and finally applying
a non-linear transformation to get a scalar via weights w ∈
Rr and non-linearity σ. Specifically, the message from
each node includes distances that reveal node positions as
well as feature-based information from input node features.
The message aggregation functions are the same class of
functions as used by existing GNNs. We further elaborate
on the design choices in Section 4.3.

P-GNNs are position-aware. The output embeddings zv
are position-aware, as each dimension of the embedding
encodes the necessary information to distinguish structurally
equivalent nodes that reside in different parts of the graph.
Note that if we permute the dimensions of all the node
embeddings zv , the resulting embeddings are equivalent to
the original embeddings because they carry the same node
positional information with respect to (permuted order of)
anchor-sets {Si}.

Multiple P-GNN layers can be naturally stacked to achieve
higher expressive power. Note that unlike GNNs, we cannot
feed the output embeddings zv from the previous layer to the
next layer, because the dimensions of zv can be arbitrarily
permuted; therefore, applying a fixed non-linear transfor-
mation over this representation is problematic. The deeper
reason we cannot feed zv to the next layer is that the position
of a node is always relative to the chosen anchor-sets; thus,

canonical position-aware embeddings do not exist. There-
fore, P-GNNs also compute structure-aware messages hv,
which are computed via an order-invariant message aggrega-
tion function that aggregates messages across anchor-sets,
and are then fed into the next P-GNN layer as input.

Algorithm 1 The framework of P-GNNs

Input: Graph G = (V, E); Set S of k anchor-sets {Si};
Node input features {xv}; Message computation func-
tion F that outputs an r dimensional message; Message
aggregation functions AGGM ,AGGS ; Trainable weight
vector w ∈ Rr; Non-linearity σ; Layer l ∈ [1, L]
Output: Position-aware embedding zv for every node v
hv ← xv
for l = 1, . . . , L do
Si ∼ V for i = 1, . . . , k
for v ∈ V do
Mv = 0 ∈ Rk×r
for i = 1 . . . , k do
Mi ← {F (v, u,hv,hu),∀u ∈ Si}
Mv[i]← AGGM (Mi)

end for
zv ← σ(Mv ·w)
hv ← AGGS({Mv[i],∀i ∈ [1, k]})

end for
end for
zv ∈ Rk, ∀v ∈ V

4.2. Anchor-set Selection

We rely on Bourgain’s Theorem to guide the choice of
anchor-sets, such that the resulting representations are guar-
anteed to have low distortion. Specifically, distortion mea-
sures the faithfulness of the embeddings in preserving dis-
tances when mapping from one metric space to another
metric space, which is defined as follows:
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Definition 3. Given two metric spaces (V, d) and (Z, d′)
and a function f : V → Z , f is said to have distortion α if
∀u, v ∈ V , 1

αd(u, v) ≤ d
′(f(u), f(v)) ≤ d(u, v).

Theorem 1 states the Bourgain Theorem (Bourgain, 1985),
which shows the existence of a low distortion embedding
that maps from any metric space to the lp metric space:

Theorem 1. (Bourgain theorem) Given any finite metric
space (V, d) with |V| = n, there exists an embedding of
(V, d) into Rk under any lp metric, where k = O(log2 n),
and the distortion of the embedding is O(log n).

A constructive proof of Theorem 1 (Linial et al., 1995) pro-
vides an algorithm to construct an O(log2 n) dimensional
embedding via anchor-sets, as summarized in Theorem 2:

Theorem 2. (Constructive proof of Bourgain theorem)
For metric space (V, d), given k = c log2 n random sets
Si,j ⊂ V, i = 1, 2, ..., log n, j = 1, 2, ..., c log n where c
is a constant, Si,j is chosen by including each point in V
independently with probability 1

2i . An embedding method
for v ∈ V is defined as:

f(v) =
(d(v, S1,1)

k
,
d(v, S1,2)

k
, ...,

d(v, Slogn,c logn)

k

)
(1)

where d(v, Si,j) = minu∈Si,j d(v, u). Then, f is an embed-
ding method that satisfies Theorem 1.

The proposed P-GNNs can be viewed as a generalization of
the embedding method in Theorem 2, where the distance
metric d is generalized via message computation function
F and message aggregation function AGGM that accounts
for both node feature information and position-based simi-
larities (Section 4.3). Using this analogy, Theorem 2 offers
two insights for selecting anchor-sets in P-GNNs. First,
O(log2 n) anchor-sets are needed to guarantee low distor-
tion embedding. Second, these anchor-sets have sizes dis-
tributed exponentially. Here, we illustrate the intuition be-
hind selecting anchor-sets with different sizes via the 1-hop
shortest path distance defined in Equation 2. Suppose that
the model is computing embeddings for node vi. We say
an anchor-set hits node vi if vi or any of its one-hop neigh-
bours is included in the anchor-set. Small anchor-sets can
provide positional information with high certainty, because
when a small anchor-set hits vi, we know that vi is located
close to one of the very few nodes in the small anchor-set.
However, the probability that such small anchor-set hits vi
is low, and the anchor-set is uninformative if it misses vi.
On the contrary, large anchor-sets have higher probability of
hitting vi, thus sampling large anchor-sets can result in high
sample efficiency. However, knowing that a large anchor-set
hits vi provides little information about its position, since vi
might be close to any of the many nodes in the anchor-set.
Therefore, choosing anchor-sets of different sizes balances
the trade-off and leads to efficient embeddings.

Following the above principle, P-GNNs choose k = c log2 n
random anchor-sets, denoted as Si,j ⊂ V , where i =
1, . . . , log n, j = 1, . . . , c log n and c is a hyperparameter.
To sample an anchor-set Si,j , we sample each node in V
independently with probability 1

2i .

4.3. Design decisions for P-GNNs

In this section, we discuss the design choices of the two key
components of P-GNNs: the message computation function
F and the message aggregation functions AGG.

Message Computation Function F . Message compu-
tation function F (v, u,hv,hu) has to account for both
position-based similarities as well as feature information.
Position-based similarities are the key to reveal a node’s po-
sitional information, while feature information may include
other side information that is useful for the prediction task.

Position-based similarities can be computed via the shortest
path distance, or, for example, personalized PageRank (Jeh
& Widom, 2003). However, since the computation of short-
est path distances has a O(|V|3) computational complexity,
we propose the following q-hop shortest path distance

dqsp(v, u) =

{
dsp(v, u), if dsp(v, u) ≤ q,
∞, otherwise

(2)

where dsp is the shortest path distance between a pair of
nodes. Note that 1-hop distance can be directly identified
from the adjacency matrix, and thus no additional computa-
tion is needed. Since we aim to map nodes that are close in
the network to similar embeddings, we further transform the
distance s(v, u) = 1

dqsp(v,u)+1
to map it to a (0, 1) range.

Feature information can be incorporated into hu by passing
in the information from the neighbouring nodes, as in GCN
(Kipf & Welling, 2017), or by concatenating node features
hv and hu, similar to GraphSAGE (Hamilton et al., 2017a),
although other approaches like attention can be used as well
(Velickovic et al., 2018). Combining position and feature
information can then be achieved via concatenation or prod-
uct. We find that simple product works well empirically.
Specifically, we find the following message passing function
F performs well empirically

F (v, u,hv,hu) = s(v, u)CONCAT(hv,hu) (3)

Message Aggregation Functions AGG. Message aggre-
gation functions aggregate information from a set of mes-
sages (vectors). Any permutation invariant function, such
as MEAN,MIN,MAX, SUM, can be used, and non-linear
transformations are often applied before and/or after the ag-
gregation to achieve higher expressive power (Zaheer et al.,
2017). We find that using simple MEAN aggregation func-
tion provides good results, thus we use it to instantiate both
AGGM and AGGS .
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5. Theoretical Analysis of P-GNNs
5.1. Connection to Existing GNNs

P-GNNs generalize existing GNN models. From P-GNN’s
point of view, existing GNNs use the same anchor-set
message aggregation techniques, but use different anchor-
set selection and sampling strategies, and only output the
structure-aware embeddings hv .

GNNs either use deterministic or stochastic neighbourhood
aggregation (Hamilton et al., 2017a). Deterministic GNNs
can be expressed as special cases of P-GNNs that treat each
individual node as an anchor-set and aggregate messages
based on q-hop distance. In particular, the function F in Al-
gorithm 1 corresponds to the message aggregation function
of a deterministic GNN. In each layer, most GNNs aggregate
information from a node’s one-hop neighbourhood (Kipf
& Welling, 2017; Velickovic et al., 2018), corresponding
to using 1-hop distance to compute messages, or directly
aggregating k-hop neighbourhood (Xu et al., 2018), corre-
sponding to computing messages within k-hop distance. For
example, a GCN (Kipf & Welling, 2017) can be written as
choosing {Si} = {vi}, AGGM = MEAN, AGGS = MEAN,
F = 1

d1sp(v,u)+1hu, and the output embedding is hu in the
final layer.

Stochastic GNNs can be viewed as P-GNNs that sample
size-1 anchor-sets, but each node’s choice of anchor-sets
is different. For example, GraphSAGE (Hamilton et al.,
2017a) can be viewed as a special case of P-GNNs where
each node samples k size-1 anchor-sets and then computes
messages using 1-hop shortest path distance anchor-set, fol-
lowed by aggregation AGGS . This understanding reveals the
connection between stochastic GNNs and P-GNNs. First,
P-GNN uses larger anchor-sets thereby enabling higher sam-
ple efficiency (Sec 4.2). Second, anchor-sets that are shared
across all nodes serve as reference points in the network,
consequently, positional information of each node can be
obtained from the shared anchor-sets.

5.2. Expressive Power of P-GNNs

Next, we show that P-GNNs provide a more general class of
inductive bias for graph representation learning than GNNs;
therefore, are more expressive to learn both structure-aware
and position-aware node embeddings.

We motivate our idea by considering pairwise relation pre-
diction between nodes. Suppose a pair of nodes u, v are
labeled with label y, using labeling function dy(u, v), and
our goal is to predict y for unseen node pairs. From the per-
spective of representation learning, we can solve the prob-
lem via learning an embedding function f that computes
the node embedding zv , where the objective is to maximize
the likelihood of the conditional distribution p(y|zu, zv).

Generally, an embedding function takes a given node v and
the graph G as input and can be written as zv = f(v,G),
while p(y|zu, zv) can be expressed as a function dz(zu, zv)
in the embedding space.

As shown in Section 3.2, GNNs instantiate f via a func-
tion fθ(v, Sv) that takes a node v and its q-hop neighbour-
hood graph Sv as arguments. Note that Sv is independent
from Su (the q-hop neighbourhood graph of node u) since
knowing the neighbourhood graph structure of node v pro-
vides no information on the neighbourhood structure of
node u. In contrast, P-GNNs assume a more general type
of inductive bias, where f is instantiated via fφ(v, S) that
aggregates messages from random anchor-sets S that are
shared across all the nodes, and nodes are differentiated
based on their different distances to the anchor-sets S. Un-
der this formulation, each node’s embedding is computed
similarly as in the stochastic GNN when combined with a
proper q-hop distance computation (Section 5.1). However,
since the anchor-sets S are shared across all nodes, pairs
of node embeddings are correlated via anchor-sets S, and
are thus no longer independent. This formulation implies
a joint distribution p(zu, zv) over node embeddings, where
zu = fφ(u, S) and zv = fφ(v, S). In summary, learning
node representations can be formalized with the following
two types of objectives:

• GNN representation learning objective:

min
θ

Eu∼Vtrain,v∼Vtrain,Su∼p(V ),Sv∼p(V )

L(dz(fθ(u, Su), fθ(v, Sv))− dy(u, v))
(4)

• P-GNN representation learning objective:

min
θ

Eu∼Vtrain,v∼Vtrain,S∼p(V )

L(dz(fφ(u, S), fφ(v, S))− dy(u, v))
(5)

where dy is the target similarity metric determined by the
learning task, for example, indicating links between nodes or
membership to the same community, and dz is the similarity
metric in the embedding space, usually the lp norm.

Optimizing Equations 4 and 5 gives representations of
nodes using joint and marginal distributions over node
embeddings, respectively. If we treat u, v as random
variables from G that can take values of any pair of
nodes, then the mutual information between the joint
distribution of node embeddings and any Y = dy(u, v)
is larger than that between the marginal distributions and
Y : I(Y ;Xjoint) ≥ I(Y ;Xmarginal), where Xjoint =
(fφ(u, Su), fφ(v, Sv)) ∼ p(fφ(u, Su), fφ(v, Sv));
Xmarginal = (fθ(u, S), fθ(v, S)) ∼ p(fθ(u, S)) ⊗
p(fθ(v, S)), where ⊗ is the Kronecker product. The gap of
this mutual information is great, if the target task dy(u, v)
is related to the positional information of nodes which can
be captured by the shared choice of anchor-sets. Thus, we



Position-aware Graph Neural Networks

conclude that P-GNNs, which embed nodes using the joint
distribution of their distances to common anchors, have
more expressive power than existing GNNs.

5.3. Complexity Analysis

Here we discuss the complexity of neural network computa-
tion. In P-GNNs, every node communicates with O(log2 n)
anchor-sets in a graph with n nodes and e edges. Suppose
on average each anchor-set contains m nodes, then there are
O(mn log2 n) message communications in total. If we fol-
low the exact anchor-set selection strategy, the complexity
will be O(n2 log2 n). In contrast, the number of commu-
nications is O(n + e) for existing GNNs. In practice, we
observe that the computation can be sped up by using a
simplified aggregation AGGS , while only slightly sacrific-
ing predictive performance. Here for each anchor-set, we
only aggregate message from the node closest to a given
node v. This removes the factor m in the complexity of
P-GNNs, making the complexity O(n log2 n). We use this
implementation in the experiments.

6. Experiments
6.1. Datasets

We perform experiments on both synthetic and real datasets.
We use the following datasets for a link prediction task:
•Grid . 2D grid graph representing a 20× 20 grid with

|V | = 400 and no node features.
• Communities. Connected caveman graph (Watts,

1999) with 1% edges randomly rewired, with 20 communi-
ties where each community has 20 nodes.
• PPI. 24 Protein-protein interaction networks (Zitnik

& Leskovec, 2017). Each graph has 3000 nodes with avg.
degree 28.8, each node has 50 dimensional feature vector.

We use the following datasets for pairwise node classifi-
cation tasks which include community detection and role
equivalence prediction2.
• Communities. The same as above-mentioned com-

munity dataset, with each node labeled with the community
it belongs to.
• Emails. 7 real-world email communication graphs

from SNAP (Leskovec et al., 2007) with no node features.
Each graph has 6 communities and each node is labeled
with the community it belongs to.
• Protein. 1113 protein graphs from (Borgwardt et al.,

2005). Each node is labeled with a functional role of the
protein. Each node has a 29 dimensional feature vector.

2Inductive position-aware node classification is not well-
defined due to permutation of labels in different graphs. However
pairwise node classification, which only decides if nodes are of the
same class, is well defined in the inductive setting.

6.2. Experimental setup

Next we evaluate P-GNN model on both transductive and
inductive learning settings.

Transductive learning. In the transductive learning setting,
the model is trained and tested on a given graph with a
fixed node ordering and has to be re-trained whenever the
node ordering is changed or a new graph is given. As a
result, the model is allowed to augment node attributes with
unique one-hot identifiers to differentiate different nodes.
Specifically, we follow the experimental setting from (Zhang
& Chen, 2018), and use two sets of 10% existing links and an
equal number of nonexistent links as test and validation sets,
with the remaining 80% existing links and equal number
of nonexistent links used as the training set. We report
the test set performance when the best performance on the
validation set is achieved, and we report results over 10 runs
with different random seeds and train/validation splits.

Inductive learning. We demonstrate the inductive learn-
ing performance of P-GNNs on pairwise node classification
tasks for which it is possible to transfer the positional infor-
mation to a new unseen graph. In particular, for inductive
tasks, augmenting node attributes with one-hot identifiers
restricts a model’s generalization ability, because the model
needs to generalize across scenarios where node identifiers
can be arbitrarily permuted. Therefore, when the dataset
does not come with node attributes, we only consider using
constant order-invariant node attributes, such as a constant
scalar, in our experiments. Original node attributes are used
if they are available.

We follow the transductive learning setting to sample links,
but only use order-invariant attributes. When multiple
graphs are available, we use 80% of the graphs for train-
ing and the remaining graphs for testing. Note that we do
not allow the model to observe ground-truth graphs at the
training time. For the pairwise node classification task, we
predict whether a pair of nodes belongs to the same commu-
nity/class. In this case, a pair of nodes that do not belong to
the same community are a negative example.

6.3. Baseline models

So far we have shown that P-GNNs are a family of models
that differ from the existing GNN models. Therefore, we
compare variants of P-GNNs against most popular GNN
models. To make a fair comparison, all models are set to
have similar number of parameters and are trained for the
same number of epochs. We fix model configurations across
all the experiments. (Implementational details are provide
in the Appendix.) We show that even the simplest P-GNN
models can significantly outperform GNN models in many
tasks, and designing more expressive P-GNN models is an
interesting venue for future work.
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Table 1. P-GNNs compared to GNNs on link prediction tasks, measured in ROC AUC. Grid-T and Communities-T refer to the transductive
learning setting of Grid and Communities, where one-hot feature vectors are used as node attributes. Standard deviation errors are given.

Grid-T Communities-T Grid Communities PPI

GCN 0.698± 0.051 0.981± 0.004 0.456± 0.037 0.512± 0.008 0.769± 0.002
GraphSAGE 0.682± 0.050 0.978± 0.003 0.532± 0.050 0.516± 0.010 0.803± 0.005
GAT 0.704± 0.050 0.980± 0.005 0.566± 0.052 0.618± 0.025 0.783± 0.004
GIN 0.732± 0.050 0.984± 0.005 0.499± 0.054 0.692± 0.049 0.782± 0.010

P-GNN-F-1L 0.542± 0.057 0.930± 0.093 0.619± 0.080 0.939± 0.083 0.719± 0.027
P-GNN-F-2L 0.637± 0.078 0.989± 0.003 0.694± 0.066 0.991± 0.003 0.805± 0.003

P-GNN-E-1L 0.665± 0.033 0.966± 0.013 0.879± 0.039 0.985± 0.005 0.775± 0.029
P-GNN-E-2L 0.834± 0.099 0.988± 0.003 0.940± 0.027 0.985± 0.008 0.808± 0.003

Table 2. Performance on pairwise node classification tasks, mea-
sured in ROC AUC. Standard deviation errors are given.

Communities Email Protein

GAT 0.520± 0.025 0.515± 0.019 0.515± 0.002
GraphSAGE 0.514± 0.028 0.511± 0.016 0.520± 0.003
GAT 0.620± 0.022 0.502± 0.015 0.528± 0.011
GIN 0.620± 0.102 0.545± 0.012 0.523± 0.002

P-GNN-F-1L 0.985± 0.008 0.630± 0.019 0.510± 0.010
P-GNN-F-2L 0.997± 0.006 0.640± 0.037 0.729± 0.176

P-GNN-E-1L 0.991± 0.013 0.625± 0.058 0.507± 0.006
P-GNN-E-2L 1.0± 0.001 0.640± 0.029 0.631± 0.175

GNN variants. We consider 4 variants of GNNs, each with
three layers, including GCN (Kipf & Welling, 2017), Graph-
SAGE (Hamilton et al., 2017a), Graph Attention Networks
(GAT) (Velickovic et al., 2018) and Graph Isomorphism Net-
work (GIN) (Xu et al., 2019). Note that in the context of link
prediction task, our implementation of GCN is equivalent
to GAE (Kipf & Welling, 2016).

P-GNN variants. We consider 2 variants of P-GNNs, either
with one layer or two layers (labeled 1L, 2L): (1) P-GNNs
using truncated 2-hop shortest path distance (P-GNN-F); (2)
P-GNNs using exact shortest path distance (P-GNN-E).

6.4. Results

Link prediction. In link prediction tasks two nodes are
generally more likely to form a link, if they are close to-
gether in the graph. Therefore, the task can largely benefit
from position-aware embeddings. Table 1 summarizes the
performance of P-GNNs and GNNs on a link prediction
task. We observe that P-GNNs significantly outperform
GNNs across all datasets and variants of the link prediction
taks (inductive vs. transductive). P-GNNs perform well in
all inductive link prediction settings, for example improve
AUC score by up to 66% over the best GNN model in the
grid dataset. In the transductive setting, P-GNNs and GNNs
achieve comparable performance. The explanation is that
one-hot encodings of nodes help GNNs to memorize node

IDs and differentiate symmetric nodes, but at the cost of
expensive computation over O(n) dimensional input fea-
tures and the failure of generalization to unobserved graphs.
On the other hand, P-GNNs can discriminate symmetric
nodes by their different distances to anchor-sets, and thus
adding one-hot features does not help their performance. In
addition, we observe that when graphs come with rich fea-
tures (e.g., PPI dataset), the performance gain of P-GNNs
is smaller, because node features may already capture posi-
tional information. Quantifying how much of the positional
information is already captured by the input node features
is an interesting direction left for future work. Finally, we
show that the “fast” variant of the P-GNN model (P-GNN-F)
that truncates expensive shotest distance computation at 2
still achieves comparable results in many datasets.

Pairwise node classification. In pairwise node classifica-
tion tasks, two nodes may belong to different communi-
ties but have similar neighbourhood structures, thus GNNs
which focus on learning structure-aware embeddings will
not perform well in this tasks. Table 2 summarizes the
performance of P-GNNs and GNNs on pairwise node clas-
sification tasks. The capability of learning position-aware
embeddings is crucial in the Communities dataset, where
all P-GNN variants nearly perfectly detect memberships of
nodes to communities, while the best GNN can only achieve
0.620 ROC AUC, which means that P-GNNs give 56% rel-
ative improvement in ROC AUC over GNNs on this task.
Similar significant performance gains are also observed in
Email and Protein datasets: 18% improvement in ROC AUC
on Email and 39% improvement of P-GNN over GNN on
Protein dataset.

7. Conclusion
We propose Position-aware Graph Neural Networks, a new
class of Graph Neural Networks for computing node embed-
dings that incorporate node positional information, while
retaining inductive capability and utilizing node features.
We show that P-GNNs consistently outperform existing
GNNs in a variety of tasks and datasets.
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