
BigDL: A Distributed Deep Learning Framework for Big Data
Jason (Jinquan) Dai

Intel Corporation
Yiheng Wang∗

Tencent Inc.
Xin Qiu

Intel Corporation
Ding Ding

Intel Corporation

Yao Zhang∗
Sequoia Capital

Yanzhang Wang
Intel Corporation

Xianyan Jia∗
Alibaba Group

Cherry (Li) Zhang
Intel Corporation

Yan Wan∗
Alibaba Group

Zhichao Li
Intel Corporation

Jiao Wang
Intel Corporation

Shengsheng Huang
Intel Corporation

Zhongyuan Wu
Intel Corporation

Yang Wang
Intel Corporation

Yuhao Yang
Intel Corporation

Bowen She
Intel Corporation

Dongjie Shi
Intel Corporation

Qi Lu
Intel Corporation

Kai Huang
Intel Corporation

Guoqiong Song
Intel Corporation

ABSTRACT
ThispaperpresentsBigDL (adistributeddeeplearning framework for
Apache Spark), which has been used by a variety of users in the
industry for building deep learning applications on production
big data platforms. It allows deep learning applications to run on
the Apache Hadoop/Spark cluster so as to directly process the
production data, and as a part of the end-to-end data analysis
pipeline for deployment and management. Unlike existing deep
learning frameworks, BigDL implements distributed, data parallel
training directly on top of the functional compute model (with
copy-on-write and coarse-grained operations) of Spark. We also
share real-world experience and “war stories” of users that havead-
optedBigDLtoaddresstheirchallenges(i.e., howtoeasilybuildend-to-
enddataanalysisanddeep learning pipelines for their production
data).

CCS CONCEPTS
• Theory of computation → Distributed algorithms; • Com-
puting methodologies → Neural networks.

KEYWORDS
distributed deep learning, big data, Apache Spark, end-to-end data
pipeline
ACM Reference Format:
Jason (Jinquan) Dai, YihengWang, XinQiu, DingDing, Yao Zhang, Yanzhang
Wang, Xianyan Jia, Cherry (Li) Zhang, Yan Wan, Zhichao Li, Jiao Wang,
Shengsheng Huang, Zhongyuan Wu, Yang Wang, Yuhao Yang, Bowen She,

∗Work was done when the author worked at Intel

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’19, November 20-23, Santa Cruz, CA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00

Dongjie Shi, Qi Lu, Kai Huang, and Guoqiong Song. 2019. BigDL: A Dis-
tributed Deep Learning Framework for Big Data . In SoCC ’19: ACM Sympo-
sium of Cloud Computing conference, Nov 20–23, 2019, Santa Cruz, CA. ACM,
New York, NY, USA, 11 pages.

1 INTRODUCTION
Continued advancements in artificial intelligence applications have
brought deep learning to the forefront of a new generation of data
analytics development; as the requirements and usage models ex-
pand, new systems and architecture beyond existing deep learning
frameworks (e.g., Caffe [1], Torch [2], TensorFlow [3], MXNet [4],
Chainer [5], PyTorch [6], etc.) have inevitably emerged. In particu-
lar, there is increasing demand from organizations to apply deep
learning technologies to their big data analysis pipelines.

To support these new requirements, we have developed BigDL,
a distributed deep learning framework for big data platforms and
workflows. It is implemented as a library on top of Apache Spark
[7], and allows users to write their deep learning applications as
standard Spark programs, running directly on existing big data
(Apache Hadoop [8] or Spark) clusters. It supports an API similar
to Torch and Keras [9] for constructing neural network models (as
illustrate in Figure 1); it also supports both large-scale distributed
training and inference, leveraging the scale-out architecture of
the underlying Spark framework (which runs across hundreds or
thousands of servers efficiently).

BigDL provides an expressive, “data-analytics integrated” deep
learning programming model; within a single, unified data analy-
sis pipeline, users can efficiently process very large dataset using
Spark APIs (e.g., RDD [10], Dataframe [11], Spark SQL, ML pipeline,
etc.), feed the distributed dataset to the neural network model, and
perform distributed training or inference on top of Spark. Contrary
to the conventional wisdom of the machine learning community
(that fine-grained data access and in-place updates are critical for
efficient distributed training [3]), BigDL provides large-scale, data
parallel training directly on top of the functional compute model
(with copy-on-write and coarse-grained operations) of Spark. By
unifying the execution model of neural network models and big
data analytics, BigDL allows new deep learning algorithms to be
seamless integrated into production data pipelines, which can then

50

DOI: 10.1145/3357223.3362707

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

SoCC ’19, November 20-23, Santa Cruz, CA Trovato and Tobin, et al.

Figure 1: The end-to-end text classification pipeline (including data loading, processing, training, prediction, etc.) on Spark
and BigDL

be easily deployed, monitored and managed in a single unified big
data platform.

BigDL is developed as an open source project1; over the past
years, a variety of users in the industry (e.g., Mastercard, World
Bank, Cray, Talroo, UCSF, JD, UnionPay, Telefonica, GigaSpaces,
etc.) have built their data analytics and deep learning applications
on top of BigDL for a wide range of workloads, such as transfer
learning based image classification, object detection and feature
extraction, sequence-to-sequence prediction for precipitation now-
casting, neural collaborative filtering for recommendations, etc. In
this paper, we focus on the execution model of BigDL to support
large-scale distributed training (a challenging system problem for
deep learning frameworks), as well as empirical results of real-
world deep learning applications built on top of BigDL. The main
contributions of this paper are:

• It presents BigDL, a working system that have been used by
many users in the industry for distributed deep learning on
production big data systems.

• It describes the distributed execution model in BigDL (that
adopts the state of practice of big data systems), which pro-
vides a viable design alternative for distributed model train-
ing (compared to existing deep learning frameworks).

• It shares real-world experience and “war stories” of users
that have adopted BigDL to address their challenges (i.e., how
to easily build end-to-end data analysis and deep learning
pipelines for their production data).

1https://github.com/intel-analytics/BigDL

2 MOTIVATION
A lot of efforts in the deep learning community have been focusing
on improving the accuracy and/or speed of standard deep learn-
ing benchmarks (such as ImageNet [12] or SQuAD [13]). For these
benchmarks, the input dataset have already been curated and ex-
plicitly labelled, and it makes sense to run deep learning algorithms
on specialized deep learning frameworks for best computing effi-
ciency. On the other hand, if the input dataset are dynamic and
messy (e.g., live data streaming into production data pipeline that
require complex processing), it makes more sense to adopt BigDL
to build the end-to-end, integrated data analytics and deep learning
pipelines for production data.

As mentioned in Section 1, BigDL has been used by a variety of
users in the industry to build deep learning applications on their
production data platform. The key motivation for adopting such
a unified data analytics and deep learning system like BigDL is to
improve the ease of use (including development, deployment and
operations) for applying deep learning in real-world data pipelines.

In real world, it is critical to run deep learning applications
directly on where the data are stored, and as a part of the end-to-
end data analysis pipelines. Applying deep learning to production
big data is very different from the ImageNet [12] or SQuAD [13]
problem; real-world big data are both dynamic and messy, and are
possibly implicitly labeled (e.g., implicit feedbacks in recommenda-
tion applications [14]), which require very complex data processing;
furthermore, instead of running ETL (extract, transform and load)
and data processing only once, real-world data analytics pipeline is
an iterative and recurrent process (e.g., back-and-forth development
and debugging, incremental model update with new production

51

BigDL: A Distributed Deep Learning Framework for Big Data SoCC ’19, November 20-23, Santa Cruz, CA

data, etc.). Therefore, it is highly inefficient to run these workloads
on separate big data and deep learning systems (e.g., processing
data on a Spark cluster, and then export the processed data to a
separate TensorFlow cluster for training/inference) in terms of not
only data transfer, but also development, debugging, deployment
and operation productivity.

One way to address the above challenge is to adopt a “connector
approach” (e.g., TFX [15], CaffeOnSpark [16], TensorFlowOnSpark
[17], SageMaker [18], etc.), which develops proper interfaces to
connect different data processing and deep learning components
using an integrated workflow (and possibly on a shared cluster).
However, the adaptation between different frameworks can impose
very large overheads in practice (e.g., inter-process communication,
data serialization and persistency, etc.). More importantly, this ap-
proach suffers from impedance mismatches [19] that arise from
crossing boundaries between heterogeneous components. For in-
stance, many of these systems (such as TensorFlowOnSpark) first
use big data (e.g., Spark) tasks to allocate resources (e.g., Spark
worker nodes), and then run deep learning (e.g., TensorFlow) tasks
on the allocated resources. However, big data and deep learning
systems have very different distributed execution model – big data
tasks are embarrassingly parallel and independent of each other,
while deep learning tasks need to coordinate with and depend on
others. For instance, when a Spark worker fails, the Spark system
just relaunch the worker (which in turn re-runs the TensorFlow
task); this however is incompatible with the TensorFlow execution
model and can cause the entire workflow to block indefinitely.

The Big Data community have also started to provide better
support for the “connector approach”. For instance, the barrier
execution mode introduced by Project Hydrogen [20] provides
gang scheduling [21] support in Spark, so as to overcome the errors
caused by different execution models between Spark and existing
deep learning frameworks (as described in the preceding paragraph).
On the other hand, this does not eliminate the difference in the two
execution models, which can still lead to lower efficiency (e.g., it
is unclear how to apply delay scheduling [22] to gang scheduling
in Spark, resulting in poorer data locality). In addition, it does not
address other impedance mismatches such as different parallelism
behaviors between data processing and model computations (e.g.,
see Section 5.1).

BigDL has taken a different approach that directly implements
the distributed deep learning support in the big data system (namely,
Apache Spark). Consequently, one can easily build the end-to-end,
“data-analytics integrated” deep learning pipelines (under a unified
programming paradigm, as illustrated in Figure 1), which can then
run as standard Spark jobs to apply large-scale data processing and
deep learning training/inference to production dataset within a sin-
gle framework. This completely eliminates the impedancemismatch
problems, and greatly improves the efficiency of development and
operations of deep learning applications for big data.

3 BIGDL EXECUTION MODEL
This section describes in detail how BigDL support large-scale,
distributed training on top of Apache Spark. While it has adopted
the standard practice (such as data parallel training [23], parameter
server and AllReduce [3] [24] [25] [26]) [27]for scalable training,

the key novelty of BigDL is how to efficiently implement these
functionalities on a functional, coarse-grained compute model of
Spark.

The conventional wisdom of the machine learning community
is that, fine-grained data access and in-place data mutation are
critical to support highly efficient parameter server, AllReduce and
distributed training [3]. On the other hand, big data systems (such
as Spark) usually adopts a very different, functional compute model,
where dataset are immutable and can only be transformed into new
dataset without side effects (i.e., copy-on-write); in addition, the
transformations are coarse-grained operations (i.e., applying the
same operation to all data items at once).

Figure 2: A Spark job consists of many Spark tasks; the dri-
ver node is responsible for scheduling and dispatching the
tasks to worker nodes, which runs the actual Spark tasks.

Algorithm 1 Data-parallel training in BigDL

1: for i = 1 to M do
2: //“model forward-backward” job
3: for each task in the Spark job do
4: read the latest weights;
5: get a random batch of data from local Sample partition;
6: compute local gradients (forward-backward on local model

replica);
7: end for
8: //“parameter synchronization” job
9: aggregate (sum) all the gradients;
10: update the weights per specified optimization method;
11: end for

BigDL is implemented as a standard library on Spark and has
adopted this functional compute model; nevertheless, it still pro-
vides an efficient “parameter server” style architecture for efficient
distributed training (by implementing an AllReduce like operation
directly using existing primitives in Spark).

3.1 Spark execution model
Similar to other Big Data systems (such as MapReduce [28] and
Dryad [29]), a Spark cluster consists of a single driver node and

52

SoCC ’19, November 20-23, Santa Cruz, CA Trovato and Tobin, et al.

Figure 3: The “model forward-backward” spark job, which computes the local gradients for each model replica in parallel.

multiple worker nodes, as shown in Figure 2. The driver is respon-
sible for coordinating tasks in a Spark job (e.g., task scheduling and
dispatching), while the workers are responsible for the actual com-
putation. To automatically parallelize the data processing across the
cluster in a fault-tolerant fashion, Spark provides a data-parallel,
functional compute model. In a Spark job, data are represented as
Resilient Distributed Dataset (RDD) [10], which is an immutable
collection of records partitioned across a cluster, and can only be
transformed to derive new RDDs (i.e., copy-on-write) through func-
tional operators like map, filter and reduce (e.g., see line 4 – 6 in
Figure 1); in addition, these operations are both data-parallel (i.e.,
applied to individual data partitions in parallel by different Spark
tasks) and coarse-grained (i.e., applying the same operation to all
data items at once).

3.2 Data-parallel training in BigDL
Built on top of the data-parallel, functional compute model of Spark,
BigDL provides synchronous data-parallel training to train a deep
neural network model across the cluster, which is shown to achieve
better scalability and efficiency (in terms of time-to-quality) com-
pared to asynchronous training [30]. Specifically, the distributed
training in BigDL is implemented as an iterative process, as illus-
trated in Algorithm 1; each iteration runs a couple of Spark jobs
to first compute the gradients using the current mini-batch (by a
“model forward-backward” job), and then make a single update
to the parameters of the neural network model (by a “parameter
synchronization” job).

The training data in BigDL are represented as an RDD of Sam-
ples (see line 6 in Figure 1), which are automatically partitioned
across the Spark cluster. In addition, to implement the data-parallel
training, BigDL also constructs an RDD of models, each of which is
a replica of the original neural network model. Before the training,
both the model and Sample RDDs are cached in memory, and co-
partitioned and co-located across the cluster, as shown in Figure
3; consequently, in each iteration of the model training, a single
“model forward-backward” Spark job can simply apply the func-
tional zip operator to the co-located partitions of the two RDDs
(with no extra cost), and compute the local gradients in parallel for
each model replica (using a small batch of data in the co-located
Sample partition), as illustrated in Figure 3.

BigDL does not support model parallelism (i.e., no distribution
of the model across different workers). This is not a limitation in
practice, as BigDL runs on Intel Xeon CPU servers, which usually
have large (100s of GB) memory size and can easily hold very large
models.

3.3 Parameter synchronization in BigDL
Parameter synchronization is a performance critical operation for
data parallel distributed model training (in terms of speed and scal-
ability). To support efficient parameter synchronization, existing
deep learning frameworks usually implement parameter server
or AllReduce using operations like fine-grained data access and
in-place data mutation. Unfortunately, these operations are not
supported by the functional compute model of big data systems
(such as Spark).

Algorithm 2 “Parameter synchronization” job
1: for each task n in the “parameter synchronization” job do
2: shuffle the nth partition of all gradients to this task;
3: aggregate (sum) these gradients;
4: updates the nth partition of the weights;
5: broadcast the nth partition of the updated weights;
6: end for

BigDL has taken a completely different approach that directly
implements an efficient AllReduce like operation using existing
primitives in Spark (e.g., shuffle, broadcast, in-memory cache, etc.),
so as to mimic the functionality of a parameter server architecture
(as illustrated in Figure 4).

• A Spark job has N tasks, each of which is assigned a unique
Id ranging from 1 to N in BigDL. After each task in the
“model forward-backward” job computes the local gradients
(as described in Section 3.2 and illustrated in Figure 3), it
evenly divides the local gradients intoN partitions, as shown
in Figure 4.

• Next, another “parameter synchronization” job is launched;
each task n of this job is responsible for managing the nth
partition of the parameters (as shown in Algorithm 2), just

53

BigDL: A Distributed Deep Learning Framework for Big Data SoCC ’19, November 20-23, Santa Cruz, CA

Figure 4: Parameter synchronization in BigDL. Each local gradient (computed by a task in the “model forward-backward” job)
is evenly divided into N partitions; then each task n in the “parameter synchronization” job aggregates these local gradients
and updates the weights for the nth partition.

like a parameter server does. Specifically, the nth partition
of the local gradients (computed by the previous “model
forward-backward” job) are first shuffled to task n, which
aggregates these gradients and applies the updates to the
nth partition of the weights, as illustrated in Figure 4.

• After that, each task n in the “parameter synchronization”
job broadcasts the nth partition of the updated weights; con-
sequently, tasks in the “model forward-backward” job of the
next iteration can read the latest value of all the weights
before the next training step begins.

• The shuffle and task-side broadcast operations described
above are implemented on top of the distributed in-memory
storage in Spark: the relevant tasks simply store the local
gradients and updated weights in the in-memory storage,
which can then be read remotely by the Spark tasks with
extremely low latency.

The implementation of AllReduce in BigDL has similar perfor-
mance characteristics compared to Ring AllReduce from Baidu Re-
search [31]. As described in [31], the total amount of data trans-
ferred to and from every node is 2K(N-1)/N in Ring AllReduce
(where N is the number of nodes and K is the total size of the pa-
rameters); similarly, in BigDL, the total amount of data transferred
to and from every node is 2K. In addition, all the bandwidth of
every node in the cluster are fully utilized in both BigDL and Ring
AllReduce. As a result, BigDL can efficiently train large deep neural
network across large (e.g., hundreds of servers) clusters, as shown
in Section 4.3.

3.4 Discussions
While BigDL has followed the standard practice (such as data par-
allel training and AllReduce operations) for scalable training, its
implementation is very different from existing deep learning frame-
works. By adopting the state of practice of big data systems (i.e.,
coarse-grained functional compute model), BigDL provides a viable
design alternative for distributed model training. This allows deep
learning algorithms and big data analytics to be seamless integrated
into a single unified data pipeline, and completely eliminates the
impedance mismatch problem described in Section 2. Furthermore,
this also makes it easy to handle failures, resource changes, task pre-
emptions, etc., which are expected to be norm rather than exception
in large-scale systems.

Existing distributed deep learning frameworks (e.g., TensorFlow,
MXNet, Petuum [26], ChainerMN [32], etc.) have adopted an archi-
tecture where multiple long-running, stateful tasks interact with
others for model computation and parameter synchronization, usu-
ally in a blocking fashion to support synchronous distributed train-
ing. While this is optimized for constant communications among
the tasks, it can only support coarse-grained failure recovery by
completely starting over from previous (e.g., a couple of epochs
before) snapshots.

In contrast, BigDL runs a series of short-lived Spark jobs (e.g., two
jobs per mini-batch as described earlier), and each task in the job is
stateless, non-blocking, and completely independent of each other;
as a result, BigDL tasks can simply run without gang scheduling. In
addition, it can also efficiently support fine-grained failure recovery
by just re-running the failed task (which can then re-generate the
associated partition of the local gradient or updated weight in
the in-memory storage of Spark); this allows the framework to

54

SoCC ’19, November 20-23, Santa Cruz, CA Trovato and Tobin, et al.

automatically and efficiently address failures (e.g., cluster scale-
down, task preemption, random bugs in the code, etc.) in a timely
fashion.

While AllReduce has been implemented in almost all existing
deep learning frameworks, the implementation in BigDL is very
different. In particular, existing deep learning frameworks usually
implement the AllReduce operation using MPI-like primitives; as
a result, they often create long-running task replicas that coordi-
nate among themselves with no central control. On the other hand,
BigDL has adopted a logically centralized control for distributed
training [33]; that is, a single driver program coordinates the dis-
tributed training (as illustrated in Algorithm 1). The driver program
first launches the “model forward-backward” job to compute the
local gradients, and then launches the “parameter synchronization”
job to update the weights. The dependence between the two jobs
are explicitly managed by the driver program, and each individual
task in the two jobs are completely stateless and non-blocking once
they are launched by the driver.

4 EVALUATION
This section evaluates the computing performance and scalability
of neural network training in BigDL. In addition, while we do not
report inference performance results in this section, Section 5.1
shows the comparison of a real-world object detection inference
pipeline running on BigDL vs. Caffe (and as reported by JD.com, the
BigDL inference pipeline running on 24 Intel Xeon servers is 3.83x
faster than Caffe running on 5 servers and 20 GPU cards).

4.1 Experiments
Two categories of neural network models are used in this section to
evaluate the performance and scalability of BigDL, namely, neural
collaborative filtering (NCF) and convolutional neural network
(CNN), which are representatives of the workloads that BigDL
users run in their production Big Data platform.

Neural Collaborative Filtering (NCF) [34] is one of most com-
monly used neural network models for recommendation, and has
also been included in MLPerf [35], a widely used benchmark suite
for measuring training and inference performance of machine learn-
ing hardware, software, and services. In our experiments, we com-
pare the training performance of BigDL (running on Intel Xeon
server) vs. PyTorch (running on GPU).

In addition, deep convolutional neural networks (CNNs) have
achieved human-level accuracy and are widely used for many com-
puter vision tasks (such as image classifications and object detec-
tion). In our experiments, we study the scalability and efficiency
of training Inception-v1 [36] on ImageNet dataset [37] in BigDL
with various number of Intel Xeon servers and Spark task; the re-
sults for other deep convolutional models, such as Inception-v3
[38] and ResNet50 [39], are similar. We do not include results for
RNN (recurrent neural networks) training in this section, because
it actually has better scalability compared to CNN training. This is
because RNN computation is much slower than CNN, and therefore
the parameter synchronization overhead (as a fraction of model
compute time) is also much lower.

4.2 Computing Performance
To study the computing performance of BigDL, we compare the
training speed of the NCF model using BigDL and PyTorch. MLPerf
has provided a reference implementation of the NCF program [40]
based on PyTorch 0.4, which trains a movie recommender using the
MovieLens 20Million dataset (ml-20m) [41], a widely used bench-
mark dataset with 20 million ratings and 465,000 tags applied to
27,000 movies by 138,000 users. It also provides the reference train-
ing speed of the PyTorch implementation (to achieve the target
accuracy goal) on a single Nvidia P100 GPU.

We have implemented the same NCF program using BigDL 0.7.0
and Spark 2.1.0 [42]. We then trained the program on a dual-socket
Intel Skylake 8180 2.5GHz server (with 56 cores in total and 384GB
memory), and it took 29.8 minutes to converge and achieve the
same accuracy goal.

Figure 5: The training performance of NCF using the BigDL
implementation is 1.6x faster than the reference PyTorch
implementation, as reported by MLPerf [43].

As reported by MLPerf, the training performance of NCF using
the BigDL implementation is 1.6x faster than the reference PyTorch
implementation [43] (as shown in Figure 5). While this only com-
pares the training performance of BigDL on a single CPU server
to PyTorch on a single GPU, it shows BigDL provides efficient im-
plementations for neural network model computation (forward
and backward). We will study the scalability and efficiency of the
distributed training in BigDL in Section 4.3 and 4.4.

4.3 Scalability of distributed training
In the machine learning community, it is commonly believed that
fine-grained data access and in-place data mutation are critical for
efficient distributed training, and mechanisms like Spark’s RDDs
would impose significant overheads [3]. In this section, we show
that BigDL provides highly efficient and scalable training, despite
it is built on top of the coarse-grained functional compute model
and immutable RDDs of Spark.

The scalability of distributed training in BigDL is determined
by the efficiency (or overheads) of its parameter synchronizations.
We first study the parameter synchronization overheads in BigDL
by running ImageNet Inception-v1 model training using BigDL
on various number of Xeon servers (dual-socket Intel Broadwell

55

BigDL: A Distributed Deep Learning Framework for Big Data SoCC ’19, November 20-23, Santa Cruz, CA

2.20GHz, 256GB RAM and 10GbE network) [44]. As shown in Figure
6, the parameter synchronization overheads, measured as a fraction
of the average model computation (forward and backward) time,
turn out to be small (e.g., less than 7% for Inception-v1 training on
32 nodes) in BigDL.

To study the scalability of the distributed training of BigDL
on very large-scale Intel Xeon clusters, Cray have run ImageNet
Inception-v1 model training using BigDL 0.3.0 with various node
counts (starting at 16 nodes and scaling up to 256 nodes) [45]. Each
node is a dual-socket Intel Broadwell 2.1 GHz (CCU 36 and DDR4
2400) server; the learning rate and Spark’s executor memory are
set to 0.10 and 120 GB respectively in the experiments.

Figure 6: Overheads of parameter synchronization (as a
fraction of average model computation time) of ImageNet
Inception-v1 training in BigDL [44].

Figure 7: Throughput of ImageNet Inception-v1 training in
BigDL 0.3.0 reported by Cray, which scales almost linearly
up to 96 nodes (and continue to scale reasonably up to 256
nodes) [45].

Figure 7 shows the throughput of ImageNet Inception-v1 train-
ing; the training throughput scales almost linearly up to 96 nodes
(e.g., about 5.3x speedup on 96 nodes compared to 16 nodes), and
continue to scale reasonably well up to 256 nodes [45]. The results
show that, even though BigDL implements its parameter server
architecture directly on top of Spark (with immutable RDDs and
coarse-grained functional operations), it can still provide efficient
distributed training on large clusters.

Figure 8: Overheads of task scheduling and dispatch (as
a fraction of average computation time) for ImageNet
Inception-v1 training in BigDL [46].

4.4 Efficiency of task scheduling
As described in Section 3.4, BigDL needs to run a very large num-
ber of shot-lived tasks on Spark (e.g., the ImageNet Inception-v1
training may run 100s of thousands of iterations and 100s of tasks
in parallel per iteration, while each task runs for just a couple
of seconds); as a result, the underlying Spark framework needs
to schedule a very large number of tasks across the cluster in a
short period of time, which can potentially become a bottleneck
on large clusters. For instance, Figure 8 shows that the overhead of
launching tasks (as a fraction of average model computation time)
in ImageNet Inception-v1 training on BigDL, while low for 100-200
tasks per iteration, can grows to over 10% when there are close to
500 tasks per iteration [46].

To address this issue, in each training iteration BigDL will launch
only a single (multi-threaded) task on each server, so as to achieve
high scalability on large clusters (e.g., up to 256 machines, as de-
scribed in Section 4.3). To scale to an even larger number (e.g., over
500) of servers, one can potentially leverage the iterative nature of
model training (in which the same operations are executed repeat-
edly). For instance, group scheduling introduced by Drizzle [47], a
low latency execution engine for Spark, can help schedule multiple
iterations (or a group) of computations at once, so as to greatly
reduce scheduling overheads even if there are a large number of
tasks in each iteration, as shown in Figure 8 (which ran on AWS
EC2 using r4.x2large instances) [46].

5 APPLICATIONS
Since its initial open source release (on Dec 30, 2016), BigDL users
have built many deep learning applications on Spark and big data
platforms. In this section, we share the real-world experience and
“war stories” of our users that adopts BigDL to build the end-to-end
data analysis and deep learning pipelines for their production data.

5.1 Image feature extraction using object
detection models

JD.com has built an end-to-end object detection and image feature
extraction pipeline on top of Spark and BigDL [48], as illustrated
in Figure 9.

56

SoCC ’19, November 20-23, Santa Cruz, CA Trovato and Tobin, et al.

Figure 9: End-to-end object detection and image feature extraction pipeline (using SSD and DeepBit models) on top of Spark
and BigDL [48].

Figure 10: Throughput of GPU clusters andXeon clusters for
the image feature extraction pipeline benchmarked by JD;
the GPU cluster consists of 20 NVIDIA Tesla K40 cards, and
the Xeon cluster consists of 1200 logical cores (with each In-
tel Xeon E5-2650 v4 2.2GHz server running 50 logical cores)
[48].

• The pipeline first reads hundreds of millions of pictures from
a distributed database into Spark (as an RDD of pictures),
and then pre-processes the RDD of pictures in a distributed
fashion using Spark.

• It then uses BigDL to load a SSD [49] model (pre-trained in
Caffe) for large scale, distributed object detection on Spark,
which generates the coordinates and scores for the detected
objects in each of the pictures.

• It then generates the RDD of target images (by keeping the
object with highest score as the target, and cropping the
original picture based on the coordinates of the target), and
further pre-processes the RDD of target images.

• Finally it uses BigDL to load a DeepBit [50] model (again
pre-trained in Caffe) for distributed feature extraction of the
target images, and stores the results (RDD of extracted object
features) in HDFS.

Previously JD engineers have deployed the same solution on a
5-node GPU cluster with 20 NVIDIA Tesla K40 following a “connec-
tor approach” (similar to CaffeOnSpark): reading data from HBase,
partitioning and processing the data across the cluster, and then
running the deep learning models on Caffe. This turns out to be
very complex and error-prone (because all of the data partitioning,
load balancing, fault tolerance, etc., need to be manually managed).
In addition, it also reveals an impedance mismatch of the “con-
nector approach” (HBase + Caffe in this case) – reading data from
HBase takes about half of the time in this solution (because the
task parallelism is tied to the number of GPU cards in the system,
which is too low for interacting with HBase to read the data).

After migrating the solution to BigDL, JD engineers can easily
implement the entire data analysis and deep learning pipeline (in-
cluding data loading, partitioning, pre-processing, model inference,
etc.,) under a unified programming paradigm on Spark. This not
only greatly improves the efficiency of development and deploy-
ment, but also delivers about 3.83x speedup (running on about 24
Intel Broadwell 2.2GHz servers) compared to running the Caffe-
based solution on the GPU cluster (with 20 NVIDIA Tesla K40 cards),
as reported by JD [48] and shown in Figure 10.

57

BigDL: A Distributed Deep Learning Framework for Big Data SoCC ’19, November 20-23, Santa Cruz, CA

Figure 11: End-to-end precipitation nowcasting workflow (using sequence-to-sequence models) on Spark and BigDL [45].

Figure 12: Predicting precipitation patterns for the next hour (i.e., a sequence of images for the future time steps of the next
hour) on Spark and BigDL [45].

5.2 Precipitation nowcasting using Seq2Seq
models

Cray has built a precipitation nowcasting (predicting short-term pre-
cipitation) application using a Seq2Seq [51] model (with a stacked
convolutional LSTM network [52] as the encoder, and another
stacked convolutional LSTM network as the decoder); the end-to-
end pipeline runs on Spark and BigDL [45], including data prepara-
tion, model training and inference (as illustrated in Figure 11).

• The application first reads over a terabyte of raw radar scan
data into Spark (as an RDD of radar images), and then con-
verts it into an RDD of NumPy ndarrays.

• It then trains a sequence-to-sequence model, using a se-
quence of images leading up to the current time as the input,
and a sequence of predicted images in the future as the out-
put.

• After the model is trained, it can be used to predict, say,
the precipitation patterns (i.e., a sequence of images for the
future time steps) of the next hour, as illustrated in Figure
12.

Cray engineers have previously implemented the application
using two separate workflows: running data processing on a highly
distributed Spark cluster, and deep learning training on another
GPU cluster running TensorFlow. It turns out that this approach not
only brings high data movement overheads, but also greatly hurts

the development productivity due to the fragmented workflow. As
a result, Cray engineers chose to implement the solution using a
single unified data analysis and deep learning pipeline on Spark
and BigDL, which greatly improves the efficiency of development
and deployment.

5.3 Real-time streaming speech classification
GigaSpaces has built a speech classification application for efficient
call center management [53], which automatically routes client
calls to corresponding support specialists in real-time. The end-to-
end workflow is implemented using BigDL with Apache Kafka [54]
and Spark Streaming [55] (as illustrated Figure 13), so as to provide
distributed realtime streaming model inference.

• When a customer calls the call center, his or her speech is
first processed on the fly by a speech recognition unit and
result is stored in Kafka.

• A Spark Streaming job then reads speech recognition results
from Kafka and classifies each call using the BigDL model
in real-time.

• The classification result is in turn used by a routing system
to redirect the call to the proper support specialist.

One of the key challenges for GigaSpaces engineers to implement
the end-to-end workflow is how to efficiently integrate the new
neural network models in the realtime stream processing pipeline,

58

SoCC ’19, November 20-23, Santa Cruz, CA Trovato and Tobin, et al.

Figure 13: The end-to-end workflow of real-time streaming speech classification on Kafka, Spark Streaming and BigDL [53].

and how to seamlessly scale the streaming applications from a hand-
ful machines to thousands of nodes. BigDL allows neural network
models to be directly applied in standard distributed streaming ar-
chitecture for Big Data (using Apache Kafka and Spark Streaming),
which can then efficiently scales out to a large number of nodes
in a transparent fashion. As a result, this greatly improves the de-
veloper productivity and deployment efficiency of the end-to-end
streaming workflow.

6 RELATED WORK
Existing deep learning frameworks (such as TensorFlow, MXNet,
Petuum, ChainerMN, etc.) typically provide efficient parameter
server and/or AllReduce implementation (using fine-grained data
access and in-place data mutation) for distributed training. In con-
trast, BigDL provides distributed training support directly on top of
a functional computemodel of big data systems (with copy-on-write
and coarse-grained operations), which is completely different from
the implementation in existing deep learning frameworks. This
provides a viable design alternative for distributed model training
by adopting the state of practice of big data systems, and makes it
easy to handle failures, resource changes, task preemptions, etc., in
a more timely and fine-grained fashion.

As discussed in Section 2, to address the challenge of integrat-
ing deep learning into real-world data pipelines, there have been
many efforts in the industry that adopt a “connector approach”
(e.g., TFX, CaffeOnSpark, TensorFlowOnSpark, SageMaker, etc.).
Unfortunately, these frameworks can incur very large overheads in
practice due to the adaptation layer between different frameworks;
more importantly, they often suffer from impedance mismatches
that arise from crossing boundaries between heterogeneous com-
ponents. While efforts in the Big Data community (such as Project
Hydrogen in Spark) attempt to overcome some of these issues
brought by the “connector approach”, they still do not address the
fundamental “impedance mismatch” problem (as discussed in Sec-
tion 2). By unifying the distributed execution model of deep neural
network models and big data analysis, BigDL provides a single
unified data pipeline for both deep learning and big data analysis,
which eliminates the adaptation overheads or impedance mismatch.

7 SUMMARY
We have described BigDL, including its distributed execution model,
computation performance, training scalability, and real-world use
cases. It allows users to build deep learning applications for big data
using a single unified data pipeline; the entire pipeline can directly
run on top of existing big data systems in a distributed fashion.
Unlike existing deep learning frameworks, it provides efficient
and scalable distributed training directly on top of the functional
compute model (with copy-on-write and coarse-grained operations)
of Spark. BigDL is a work in progress, but our initial experience
is encouraging. Since its initial open source release on Dec 30,
2016, it has received over 3100 stars on Github; and it has enabled
many users (e.g., Mastercard, World Bank, Cray, Talroo, UCSF, JD,
UnionPay, Telefonica, GigaSpaces, etc.) to build new analytics and
deep learning applications for their production data pipelines.

REFERENCES
[1] Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev, Sergey and

Long, Jonathan and Girshick, Ross and Guadarrama, Sergio and Darrell, Trevor.
Caffe: Convolutional architecture for fast feature embedding. in Proceedings of
the 22nd ACM international conference on Multimedia. MM’14.

[2] Collobert, Ronan and Kavukcuoglu, Koray and Farabet, Clément. Torch7: A
matlab-like environment for machine learning. in BigLearn, NIPS workshop.
(2011).

[3] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray,
D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and
Zheng, X. Tensorflow: A system for large-scale machine learning. in Proceedings
of the 12th USENIX Conference on Operating Systems Design and Implementation.
OSDI’16.

[4] Chen, Tianqi and Li, Mu and Li, Yutian and Lin, Min and Wang, Naiyan and
Wang, Minjie and Xiao, Tianjun and Xu, Bing and Zhang, Chiyuan and Zhang,
Zheng. Mxnet: A flexible and efficient machine learning library for heterogeneous
distributed systems. In Proceedings of Workshop on Machine Learning Systems
(LearningSys) in The Twenty-ninth Annual Conference on Neural Information
Processing Systems (NIPS). (2015).

[5] Tokui, Seiya and Oono, Kenta and Hido, Shohei and Clayton, Justin Chainer: a
next-generation open source framework for deep learning in In Proceedings of
workshop on machine learning systems (LearningSys) in the twenty-ninth annual
conference on neural information processing systems (NIPS). (2015).

[6] Paszke, Adam and Gross, Sam and Chintala, Soumith and Chanan, Gregory and
Yang, Edward and DeVito, Zachary and Lin, Zeming and Desmaison, Alban and
Antiga, Luca and Lerer, Adam Automatic differentiation in pytorch. NIPS 2017
Autodiff Workshop. (2017).

[7] Apache spark Apache software foundation. (2014) (https://spark.apache.org).
[8] Apache hadoop Apache software foundation. (2006) (https://hadoop.apache.org).
[9] Chollet,F.et al. Keras. (https://keras.io).
[10] Zaharia, Matei and Chowdhury, Mosharaf and Das, Tathagata and Dave, Ankur

and Ma, Justin and McCauley, Murphy and Franklin, Michael J and Shenker, Scott
and Stoica, Ion. Resilient distributed datasets: A fault-tolerant abstraction for

59

BigDL: A Distributed Deep Learning Framework for Big Data SoCC ’19, November 20-23, Santa Cruz, CA

in-memory cluster computing. in Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation. NSDI’12.

[11] Armbrust, Michael and Xin, Reynold S and Lian, Cheng and Huai, Yin and Liu,
Davies and Bradley, Joseph K andMeng, Xiangrui and Kaftan, Tomer and Franklin,
Michael J and Ghodsi, Ali and others. Spark sql: Relational data processing in
spark. in 2015 ACM SIGMOD international conference on management of data.
SIGMOD’15.

[12] Russakovsky, Olga and Deng, Jia and Su, Hao and Krause, Jonathan and Satheesh,
Sanjeev and Ma, Sean and Huang, Zhiheng and Karpathy, Andrej and Khosla,
Aditya and Bernstein, Michael and others. Imagenet large scale visual recognition
challenge. International journal of computer vision(IJCV). (2015).

[13] Rajpurkar,P and Zhang,J and Lopyrev,K and Liang,P. Squad: 100,000+ questions
for machine comprehension of text. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, EMNLP. (2016).

[14] Jawaheer,G and Szomszor,M and Kostkova,P. Comparison of implicit and explicit
feedback from an online music recommendation service. in proceedings of the 1st
international workshop on information heterogeneity and fusion in recommender
systems. (2010) HetRec’10.

[15] Baylor, D., Breck, E., Cheng, H.-T., Fiedel, N., Foo, C. Y., Haque, Z., Haykal, S.,
Ispir, M., Jain, V., Koc, L., Koo, C. Y., Lew, L., Mewald, C., Modi, A. N., Polyzo-
tis, N., Ramesh, S., Roy, S., Whang, S. E., Wicke, M., Wilkiewicz, J., Zhang, X.,
and Zinkevich, M. Tfx: A tensorflow-based production-scale machine learning
platform in Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD’17.

[16] CaffeOnSpark. Yahoo. (2016) (https://github.com/yahoo/CaffeOnSpark).
[17] TensorflowOnSpark. Yahoo. (2017) (https://github.com/yahoo/TensorFlowOnSpark).
[18] Sagemaker. Amazon. (2017) (https://aws.amazon.com/sagemaker/).
[19] Lin, Jimmy and Ryaboy, Dmitriy Scaling big data mining infrastructure: the

twitter experience. ACM SIGKDD Explorations Newsletter 14(2). (December 2012).
[20] Reynold Xin. "project hydrogen: Unifying state-of-the-art ai and big data in

apache spark". spark + ai summit 2018.
[21] Gang scheduling. (https://en.wikipedia.org/wiki/Gang_scheduling/).
[22] Zaharia, Matei and Borthakur, Dhruba and Sen Sarma, Joydeep and Elmeleegy,

Khaled and Shenker, Scott and Stoica, Ion. Delay scheduling: a simple technique
for achieving locality and fairness in cluster scheduling. in Proceedings of the 5th
European conference on Computer systems,. EuroSys’10.

[23] Dean,J., Corrado,G., Monga,R., Chen,K., Devin,M., Mao,M., Ranzato,Marc’aurelio,
Senior,A., Tucker,P., Yang,K., Le,Q.V., Ng,A.Y. Large scale distributed deep net-
works. in Proceedings of the 25th International Conference on Neural Information
Processing Systems. NIPS’12.

[24] Li,M., Andersen,D.G., Park,J.W., Smola,A.J., Ahmed,A., Josifovski,V., Long,J.,
Shekita,E.J., and Su,B.-Y. Scaling distributed machine learning with the parameter
server. in Proceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation. OSDI’14.

[25] Chilimbi,T., Suzue,Y., Apacible,J., and Kalyanaraman,K. Project adam: Building
an efficient and scalable deep learning training system. in Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation. OSDI’14.

[26] Xing,E.P., Ho,Q., Dai,W., Kim,J.-K., Wei,J., Lee,S., Zheng,X., Xie,P., Kumar,A., and
Yu,Y. Petuum: A new platform for distributed machine learning on big data.
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD’15.

[27] Zhang,H., Zheng,Z., Xu,S., Dai,W., Ho,Q., Liang,X., Hu,Z., Wei,J., Xie,P., and
Xing,E.P. Poseidon: An efficient communication architecture for distributed deep
learning on gpu clusters. in 2017 USENIX Annual Technical Conference (USENIX
ATC 17). (2017).

[28] Jeffrey Dean, Sanjay Ghemawat Mapreduce: simplified data processing on large
clusters. Proceedings of the 6th conference on Symposium on Operating Systems
Design & Implementation,{OSDI}. (2004).

[29] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:
distributed data-parallel programs from sequential building blocks in Proceedings
of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007.
EuroSys’07.

[30] Chen,J., Monga,R., Bengio,S., and Jozefowicz,R. Revisiting distributed synchro-
nous sgd. In International Conference on Learning Representations Workshop Track.
(2016).

[31] Gibiansky,Andrew. "bringing hpc techniques to deep learning".
(http://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/).

[32] Akiba,T., Fukuda,K., and Suzuki,S. Chainermn: Scalable distributed deep learning
framework. Proceedings of Workshop on ML Systems in The Thirty-first Annual
Conference on Neural Information Processing Systems (NIPS). (2017).

[33] Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Gold-
berg, Joseph E. Gonzalez, Michael I. Jordan, Ion Stoica. Rllib: Abstractions for
distributed reinforcement learning. International Conference on Machine Learning
(ICML). (2018).

[34] He, Xiangnan and Liao, Lizi and Zhang, Hanwang and Nie, Liqiang and Hu, Xia
and Chua, Tat-Seng Neural collaborative filtering. in Proceedings of the 26th inter-
national conference on world wide web. International World Wide Web Conferences
Steering Committee. (2017).

[35] Mlperf. (https://mlperf.org/).
[36] Szegedy,C., Liu,W., Jia,Y., Sermanet,P., Reed,S., Anguelov,D., Erhan,D., Van-

houcke,V., and Rabinovich,A. Going deeper with convolutions in Computer Vision
and Pattern Recognition (CVPR). (2015).

[37] Deng,J., Socher,R., Fei-Fei,L., Dong,W., Li,K., and Li,L.-J. Imagenet: A large-scale
hierarchical image database. in 2009 IEEE conference on computer vision and
pattern recognition(CVPR). (2009).

[38] Szegedy,C., Vanhoucke,V., Ioffe,S., Shlens,J., and Wojna,Z. Rethinking the incep-
tion architecture for computer vision in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). (2016).

[39] He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian Deep residual
learning for image recognition. in Proceedings of the IEEE conference on computer
vision and pattern recognition. (2016).

[40] Reference ncf implementation using pytorch in mlperf.
(https://github.com/mlperf/training/blob/
master/recommendation/pytorch/README.md).

[41] Harper, F Maxwell and Konstan, Joseph A. "the movielens datasets: History and
context". ACM Trans. Interact. Intell. Syst. 5(4):19. (2015).

[42] Ncf implementation in bigdl. (https://github.com/mlperf/training_results_v0.5/tree
/master/v0.5.0/intel/intel_ncf_submission).

[43] Mlperf 0.5 training results. (https://mlperf.org/training-results-0-5).
[44] Jason (Jinquan) Dai, and Ding Ding. Very large-scale distributed deep learning

with bigdl. o’reilly ai conference, san francisco. (2017).
[45] Alex Heye, et al. "scalable deep learning with bigdl on the urika-xc soft-

ware suite". (https://www.cray.com/blog/scalable-deep-learning-bigdl-urika-xc-
software-suite/).

[46] Shivaram Venkataraman, et al. "accelerating deep learning training with bigdl
and drizzle on apache spark". (https://rise.cs.berkeley.edu/blog/accelerating-deep-
learning-training-with-bigdl-and-drizzle-on-apache-spark/).

[47] Venkataraman,S., Panda,A., Ousterhout,K., Armbrust,M., Ghodsi,A., Franklin,M.J.,
Recht,B., and Stoica,I. Drizzle: Fast and adaptable stream processing at scale in
Proceedings of the 26th Symposium on Operating Systems Principles. SOSP’17.

[48] Jason (Jinquan) Dai, et al. Building large-scale image feature extraction with
bigdl at jd.com. (https://software.intel.com/en-us/articles/building-large-scale-
image-feature-extraction-with-bigdl-at-jdcom).

[49] Liu,W., Anguelov,D., Erhan,D., Szegedy,C., Reed,S.E., Fu,C.-Y., and Berg,A.C. Ssd:
Single shot multibox detector in ECCV. (2016).

[50] Lin, K., Lu, J., Chen, C.-S., and Zhou, J. Learning compact binary descriptors with
unsupervised deep neural networks. in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). (2016).

[51] Sutskever,I., Vinyals,O., and Le,Q.V. Sequence to sequence learning with neural
networks. in Proceedings of the 27th International Conference on Neural Information
Processing Systems. Vol. 2. NIPS’14.

[52] Shi,X., Chen,Z., Wang,H., Yeung,D.-Y., Wong,W.-k., and Woo,W.-c. Convolutional
lstm network: A machine learning approach for precipitation nowcasting. in
Proceedings of the 28th International Conference on Neural Information Processing
Systems. Vol. 1. NIPS’15.

[53] Rajiv Shah. Gigaspaces integrates insightedge platform with intel’s bigdl for
scalable deep learning innovation. (https://www.gigaspaces.com/blog/gigaspaces-
to-demo-with-intel-at-strata-data-conference-and-microsoft-ignite/).

[54] Apache Kafka. (https://kafka.apache.org/).
[55] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and

Ion Stoica. Discretized streams: fault-tolerant streaming computation at scale
in The Twenty-Fourth ACM Symposium on Operating Systems Principles. (2013)
SOSP’13.

60

	Abstract
	1 Introduction
	2 Motivation
	3 BigDL Execution Model
	3.1 Spark execution model
	3.2 Data-parallel training in BigDL
	3.3 Parameter synchronization in BigDL
	3.4 Discussions

	4 Evaluation
	4.1 Experiments
	4.2 Computing Performance
	4.3 Scalability of distributed training
	4.4 Efficiency of task scheduling

	5 Applications
	5.1 Image feature extraction using object detection models
	5.2 Precipitation nowcasting using Seq2Seq models
	5.3 Real-time streaming speech classification

	6 Related Work
	7 Summary
	References

